Properties

Label 8-2912e4-1.1-c1e4-0-7
Degree $8$
Conductor $7.191\times 10^{13}$
Sign $1$
Analytic cond. $292330.$
Root an. cond. $4.82207$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 4·7-s − 5·9-s + 5·11-s − 4·13-s + 15-s + 2·17-s + 3·19-s + 4·21-s − 14·23-s − 8·25-s + 4·27-s − 3·29-s − 6·31-s − 5·33-s + 4·35-s − 37-s + 4·39-s + 9·41-s − 5·43-s + 5·45-s − 14·47-s + 10·49-s − 2·51-s + 53-s − 5·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 1.51·7-s − 5/3·9-s + 1.50·11-s − 1.10·13-s + 0.258·15-s + 0.485·17-s + 0.688·19-s + 0.872·21-s − 2.91·23-s − 8/5·25-s + 0.769·27-s − 0.557·29-s − 1.07·31-s − 0.870·33-s + 0.676·35-s − 0.164·37-s + 0.640·39-s + 1.40·41-s − 0.762·43-s + 0.745·45-s − 2.04·47-s + 10/7·49-s − 0.280·51-s + 0.137·53-s − 0.674·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(292330.\)
Root analytic conductor: \(4.82207\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{20} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7$C_1$ \( ( 1 + T )^{4} \)
13$C_1$ \( ( 1 + T )^{4} \)
good3$C_2 \wr S_4$ \( 1 + T + 2 p T^{2} + 7 T^{3} + 20 T^{4} + 7 p T^{5} + 2 p^{3} T^{6} + p^{3} T^{7} + p^{4} T^{8} \) 4.3.b_g_h_u
5$C_2 \wr S_4$ \( 1 + T + 9 T^{2} + 6 T^{3} + 12 p T^{4} + 6 p T^{5} + 9 p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \) 4.5.b_j_g_ci
11$C_2 \wr S_4$ \( 1 - 5 T + 42 T^{2} - 141 T^{3} + 684 T^{4} - 141 p T^{5} + 42 p^{2} T^{6} - 5 p^{3} T^{7} + p^{4} T^{8} \) 4.11.af_bq_afl_bai
17$C_2 \wr S_4$ \( 1 - 2 T + 40 T^{2} - 8 p T^{3} + 774 T^{4} - 8 p^{2} T^{5} + 40 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \) 4.17.ac_bo_afg_bdu
19$C_2 \wr S_4$ \( 1 - 3 T + 51 T^{2} - 124 T^{3} + 1374 T^{4} - 124 p T^{5} + 51 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \) 4.19.ad_bz_aeu_caw
23$C_2 \wr S_4$ \( 1 + 14 T + 140 T^{2} + 968 T^{3} + 5285 T^{4} + 968 p T^{5} + 140 p^{2} T^{6} + 14 p^{3} T^{7} + p^{4} T^{8} \) 4.23.o_fk_blg_hvh
29$C_2 \wr S_4$ \( 1 + 3 T + 67 T^{2} + 30 T^{3} + 1992 T^{4} + 30 p T^{5} + 67 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \) 4.29.d_cp_be_cyq
31$C_2 \wr S_4$ \( 1 + 6 T + 108 T^{2} + 546 T^{3} + 4775 T^{4} + 546 p T^{5} + 108 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \) 4.31.g_ee_va_hbr
37$C_2 \wr S_4$ \( 1 + T + 50 T^{2} + 39 T^{3} + 952 T^{4} + 39 p T^{5} + 50 p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \) 4.37.b_by_bn_bkq
41$C_2 \wr S_4$ \( 1 - 9 T + 142 T^{2} - 1071 T^{3} + 8322 T^{4} - 1071 p T^{5} + 142 p^{2} T^{6} - 9 p^{3} T^{7} + p^{4} T^{8} \) 4.41.aj_fm_abpf_mic
43$C_2 \wr S_4$ \( 1 + 5 T + 119 T^{2} + 732 T^{3} + 6500 T^{4} + 732 p T^{5} + 119 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} \) 4.43.f_ep_bce_jqa
47$C_2 \wr S_4$ \( 1 + 14 T + 90 T^{2} + 174 T^{3} - 87 T^{4} + 174 p T^{5} + 90 p^{2} T^{6} + 14 p^{3} T^{7} + p^{4} T^{8} \) 4.47.o_dm_gs_adj
53$C_2 \wr S_4$ \( 1 - T + 187 T^{2} - 98 T^{3} + 14172 T^{4} - 98 p T^{5} + 187 p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8} \) 4.53.ab_hf_adu_uzc
59$C_2 \wr S_4$ \( 1 + 4 T + 144 T^{2} + 192 T^{3} + 9670 T^{4} + 192 p T^{5} + 144 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \) 4.59.e_fo_hk_ohy
61$C_2 \wr S_4$ \( 1 - 11 T + 242 T^{2} - 1857 T^{3} + 22010 T^{4} - 1857 p T^{5} + 242 p^{2} T^{6} - 11 p^{3} T^{7} + p^{4} T^{8} \) 4.61.al_ji_actl_bgoo
67$C_2 \wr S_4$ \( 1 + 9 T + 274 T^{2} + 1797 T^{3} + 27730 T^{4} + 1797 p T^{5} + 274 p^{2} T^{6} + 9 p^{3} T^{7} + p^{4} T^{8} \) 4.67.j_ko_crd_bpao
71$C_2 \wr S_4$ \( 1 + 16 T + 170 T^{2} + 1006 T^{3} + 118 p T^{4} + 1006 p T^{5} + 170 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \) 4.71.q_go_bms_mkg
73$C_2 \wr S_4$ \( 1 - 2 T + 184 T^{2} - 842 T^{3} + 15827 T^{4} - 842 p T^{5} + 184 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \) 4.73.ac_hc_abgk_xkt
79$C_2 \wr S_4$ \( 1 + 20 T + 370 T^{2} + 4124 T^{3} + 43847 T^{4} + 4124 p T^{5} + 370 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \) 4.79.u_og_gcq_cmwl
83$C_2 \wr S_4$ \( 1 - T + 231 T^{2} + 318 T^{3} + 23740 T^{4} + 318 p T^{5} + 231 p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8} \) 4.83.ab_ix_mg_bjdc
89$C_2 \wr S_4$ \( 1 + 7 T + 317 T^{2} + 1720 T^{3} + 40642 T^{4} + 1720 p T^{5} + 317 p^{2} T^{6} + 7 p^{3} T^{7} + p^{4} T^{8} \) 4.89.h_mf_coe_cide
97$C_2 \wr S_4$ \( 1 + 282 T^{2} + 342 T^{3} + 35837 T^{4} + 342 p T^{5} + 282 p^{2} T^{6} + p^{4} T^{8} \) 4.97.a_kw_ne_cbaj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.56543784759911156377652368104, −6.37768038356445166806797119198, −6.07421010621553433701418613926, −6.04911934774788757856241593559, −5.83778793643606471924494681378, −5.57815815742473745839038659353, −5.46453580267837855676100271641, −5.44911113528129906523532181499, −5.11536339944799272207772035016, −4.69473107501258764855799432391, −4.57941836241255147830018626546, −4.22056467019701046566742628336, −4.04517306246182694425498400954, −3.78586258441380039757166352105, −3.68917352620804844443542457769, −3.66042821804842475905503934178, −3.33277818242209319344836538225, −2.86441432494255641851096996572, −2.73592138068253464570756657729, −2.51787664429688827451485147746, −2.46273187993921840128005852549, −1.80334776815066168339992993483, −1.73019648355216169817230747390, −1.22765607001489586944954671904, −1.20841385389751445067777285602, 0, 0, 0, 0, 1.20841385389751445067777285602, 1.22765607001489586944954671904, 1.73019648355216169817230747390, 1.80334776815066168339992993483, 2.46273187993921840128005852549, 2.51787664429688827451485147746, 2.73592138068253464570756657729, 2.86441432494255641851096996572, 3.33277818242209319344836538225, 3.66042821804842475905503934178, 3.68917352620804844443542457769, 3.78586258441380039757166352105, 4.04517306246182694425498400954, 4.22056467019701046566742628336, 4.57941836241255147830018626546, 4.69473107501258764855799432391, 5.11536339944799272207772035016, 5.44911113528129906523532181499, 5.46453580267837855676100271641, 5.57815815742473745839038659353, 5.83778793643606471924494681378, 6.04911934774788757856241593559, 6.07421010621553433701418613926, 6.37768038356445166806797119198, 6.56543784759911156377652368104

Graph of the $Z$-function along the critical line