Properties

Label 8-2912e4-1.1-c0e4-0-9
Degree $8$
Conductor $7.191\times 10^{13}$
Sign $1$
Analytic cond. $4.46060$
Root an. cond. $1.20551$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 3·9-s + 2·11-s − 2·19-s − 25-s + 6·27-s + 4·33-s + 2·41-s + 2·43-s − 2·49-s − 4·57-s − 2·67-s + 2·73-s − 2·75-s + 9·81-s + 2·97-s + 6·99-s + 2·113-s + 3·121-s + 4·123-s + 127-s + 4·129-s + 131-s + 137-s + 139-s − 4·147-s + 149-s + ⋯
L(s)  = 1  + 2·3-s + 3·9-s + 2·11-s − 2·19-s − 25-s + 6·27-s + 4·33-s + 2·41-s + 2·43-s − 2·49-s − 4·57-s − 2·67-s + 2·73-s − 2·75-s + 9·81-s + 2·97-s + 6·99-s + 2·113-s + 3·121-s + 4·123-s + 127-s + 4·129-s + 131-s + 137-s + 139-s − 4·147-s + 149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(4.46060\)
Root analytic conductor: \(1.20551\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(5.037979487\)
\(L(\frac12)\) \(\approx\) \(5.037979487\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
good3$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
5$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
11$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{4} \)
19$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{4} \)
29$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
31$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
47$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
53$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
59$C_2$ \( ( 1 + T^{2} )^{4} \)
61$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
67$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
71$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
73$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
79$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
83$C_2$ \( ( 1 + T^{2} )^{4} \)
89$C_2$ \( ( 1 + T^{2} )^{4} \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.53965605888150107162065506616, −6.12695205021190603148704099688, −6.10427414464888157679500699422, −6.01255922708122516831342151166, −5.86802120836177946739421512763, −5.09408692557147401448354601100, −5.06204406608334819910012405669, −4.95221943254240720503036446232, −4.62416306669467965755958430644, −4.41881785069666479594765214681, −4.26507641774063281630102816012, −4.10407250123421276693561503817, −3.75856571159128602131139794255, −3.67846858697648895926639916634, −3.67165800867061436642356626256, −3.07965008599347670591814628963, −2.95507095246583913182854027884, −2.81509808379246081577271584049, −2.35131818608718949373813984806, −2.26162059233679385888283944106, −2.02488126348234747902788692802, −1.78435383028287559556780329888, −1.32146734246307972710866374836, −1.11713360638909382170224689425, −0.878020261799088288070335889632, 0.878020261799088288070335889632, 1.11713360638909382170224689425, 1.32146734246307972710866374836, 1.78435383028287559556780329888, 2.02488126348234747902788692802, 2.26162059233679385888283944106, 2.35131818608718949373813984806, 2.81509808379246081577271584049, 2.95507095246583913182854027884, 3.07965008599347670591814628963, 3.67165800867061436642356626256, 3.67846858697648895926639916634, 3.75856571159128602131139794255, 4.10407250123421276693561503817, 4.26507641774063281630102816012, 4.41881785069666479594765214681, 4.62416306669467965755958430644, 4.95221943254240720503036446232, 5.06204406608334819910012405669, 5.09408692557147401448354601100, 5.86802120836177946739421512763, 6.01255922708122516831342151166, 6.10427414464888157679500699422, 6.12695205021190603148704099688, 6.53965605888150107162065506616

Graph of the $Z$-function along the critical line