Properties

Label 8-2912e4-1.1-c0e4-0-6
Degree $8$
Conductor $7.191\times 10^{13}$
Sign $1$
Analytic cond. $4.46060$
Root an. cond. $1.20551$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·23-s − 2·49-s − 2·81-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯
L(s)  = 1  + 8·23-s − 2·49-s − 2·81-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(4.46060\)
Root analytic conductor: \(1.20551\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.035598821\)
\(L(\frac12)\) \(\approx\) \(2.035598821\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2^2$ \( 1 + T^{4} \)
good3$C_2^2$ \( ( 1 + T^{4} )^{2} \)
5$C_2^2$ \( ( 1 + T^{4} )^{2} \)
11$C_2$ \( ( 1 + T^{2} )^{4} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
19$C_2^2$ \( ( 1 + T^{4} )^{2} \)
23$C_1$ \( ( 1 - T )^{8} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
31$C_2$ \( ( 1 + T^{2} )^{4} \)
37$C_2$ \( ( 1 + T^{2} )^{4} \)
41$C_2$ \( ( 1 + T^{2} )^{4} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
47$C_2$ \( ( 1 + T^{2} )^{4} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
59$C_2^2$ \( ( 1 + T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + T^{4} )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{4} \)
71$C_2$ \( ( 1 + T^{2} )^{4} \)
73$C_2$ \( ( 1 + T^{2} )^{4} \)
79$C_2$ \( ( 1 + T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + T^{4} )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{4} \)
97$C_2$ \( ( 1 + T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.36572528731631120153281003542, −6.31905718175424271463082853833, −6.23746786558111423079833758947, −5.59803825940245193684963537792, −5.38873514127380706061955727988, −5.37920740541460559824249463172, −5.09557412397718818382599342686, −4.99963572458858540318388140270, −4.89391953767978279482845126036, −4.79089158383282646471957162967, −4.33012411136294082458597471480, −4.10721004759174667684788453529, −3.92916743748449040022177749409, −3.61305270898659632363975126260, −3.36273230211768659078341144150, −3.10666737361676896194971870614, −2.88441013950534007533070264167, −2.76511523523130414000747269851, −2.65681194409379412654779901492, −2.49101923101141950941641141133, −1.68251305297090407784206146699, −1.53715507072371589536864120797, −1.23206927424380995611394190655, −1.14267381849883199594566833199, −0.66417315727420411801702924684, 0.66417315727420411801702924684, 1.14267381849883199594566833199, 1.23206927424380995611394190655, 1.53715507072371589536864120797, 1.68251305297090407784206146699, 2.49101923101141950941641141133, 2.65681194409379412654779901492, 2.76511523523130414000747269851, 2.88441013950534007533070264167, 3.10666737361676896194971870614, 3.36273230211768659078341144150, 3.61305270898659632363975126260, 3.92916743748449040022177749409, 4.10721004759174667684788453529, 4.33012411136294082458597471480, 4.79089158383282646471957162967, 4.89391953767978279482845126036, 4.99963572458858540318388140270, 5.09557412397718818382599342686, 5.37920740541460559824249463172, 5.38873514127380706061955727988, 5.59803825940245193684963537792, 6.23746786558111423079833758947, 6.31905718175424271463082853833, 6.36572528731631120153281003542

Graph of the $Z$-function along the critical line