Properties

Label 8-2912e4-1.1-c0e4-0-10
Degree $8$
Conductor $7.191\times 10^{13}$
Sign $1$
Analytic cond. $4.46060$
Root an. cond. $1.20551$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 9-s + 2·11-s + 4·13-s + 2·17-s − 2·19-s − 25-s − 2·31-s + 2·47-s + 10·49-s − 2·53-s − 2·59-s − 2·61-s − 4·63-s − 2·67-s + 8·77-s + 81-s + 16·91-s − 2·99-s + 2·101-s − 8·113-s − 4·117-s + 8·119-s + 3·121-s + 127-s + 131-s − 8·133-s + ⋯
L(s)  = 1  + 4·7-s − 9-s + 2·11-s + 4·13-s + 2·17-s − 2·19-s − 25-s − 2·31-s + 2·47-s + 10·49-s − 2·53-s − 2·59-s − 2·61-s − 4·63-s − 2·67-s + 8·77-s + 81-s + 16·91-s − 2·99-s + 2·101-s − 8·113-s − 4·117-s + 8·119-s + 3·121-s + 127-s + 131-s − 8·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(4.46060\)
Root analytic conductor: \(1.20551\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(4.442870155\)
\(L(\frac12)\) \(\approx\) \(4.442870155\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( ( 1 - T )^{4} \)
13$C_1$ \( ( 1 - T )^{4} \)
good3$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
5$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
11$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
17$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
19$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
23$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
29$C_2$ \( ( 1 + T^{2} )^{4} \)
31$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
37$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
41$C_2$ \( ( 1 + T^{2} )^{4} \)
43$C_2$ \( ( 1 + T^{2} )^{4} \)
47$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
59$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
67$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{4} \)
73$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
79$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
83$C_2$ \( ( 1 + T^{2} )^{4} \)
89$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.23009760474550316731254113846, −6.04283894442203152032278134954, −5.92721257397977876552478806976, −5.83696953279924815092031896428, −5.80232784790860904202210208565, −5.41624867592337258551838594284, −5.17791670567486884247589183260, −4.93142220701193104095800944482, −4.87667259330048617312405283990, −4.41150643984988292977054012452, −4.22869953294293007599526234302, −4.07407524812240524836543398456, −4.02330379700013969687134688539, −3.86444550479124806060785349907, −3.48253773567159756060877599724, −3.34540680912194764454330570726, −3.05120606428891277508926800416, −2.73685768063699449893345133909, −2.26730055566263861706839171139, −2.00702952893846279146144385248, −1.66853572774740992175334328481, −1.57314495138489382055533451524, −1.44226396665154944493925426163, −1.17002816516479536543121191828, −0.996912179106803796498307249269, 0.996912179106803796498307249269, 1.17002816516479536543121191828, 1.44226396665154944493925426163, 1.57314495138489382055533451524, 1.66853572774740992175334328481, 2.00702952893846279146144385248, 2.26730055566263861706839171139, 2.73685768063699449893345133909, 3.05120606428891277508926800416, 3.34540680912194764454330570726, 3.48253773567159756060877599724, 3.86444550479124806060785349907, 4.02330379700013969687134688539, 4.07407524812240524836543398456, 4.22869953294293007599526234302, 4.41150643984988292977054012452, 4.87667259330048617312405283990, 4.93142220701193104095800944482, 5.17791670567486884247589183260, 5.41624867592337258551838594284, 5.80232784790860904202210208565, 5.83696953279924815092031896428, 5.92721257397977876552478806976, 6.04283894442203152032278134954, 6.23009760474550316731254113846

Graph of the $Z$-function along the critical line