Properties

Label 8-2883e4-1.1-c0e4-0-1
Degree $8$
Conductor $6.908\times 10^{13}$
Sign $1$
Analytic cond. $4.28555$
Root an. cond. $1.19950$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s − 4·7-s + 16-s + 4·19-s + 2·25-s − 8·28-s + 6·49-s − 2·64-s + 8·76-s − 81-s − 4·97-s + 4·100-s + 4·103-s + 4·109-s − 4·112-s + 4·121-s + 127-s + 131-s − 16·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + ⋯
L(s)  = 1  + 2·4-s − 4·7-s + 16-s + 4·19-s + 2·25-s − 8·28-s + 6·49-s − 2·64-s + 8·76-s − 81-s − 4·97-s + 4·100-s + 4·103-s + 4·109-s − 4·112-s + 4·121-s + 127-s + 131-s − 16·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 31^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 31^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 31^{8}\)
Sign: $1$
Analytic conductor: \(4.28555\)
Root analytic conductor: \(1.19950\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 31^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.637198146\)
\(L(\frac12)\) \(\approx\) \(1.637198146\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2^2$ \( 1 + T^{4} \)
31 \( 1 \)
good2$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
5$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
7$C_2$ \( ( 1 + T + T^{2} )^{4} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
13$C_2$ \( ( 1 + T^{2} )^{4} \)
17$C_2^2$ \( ( 1 + T^{4} )^{2} \)
19$C_2$ \( ( 1 - T + T^{2} )^{4} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
29$C_2^2$ \( ( 1 + T^{4} )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + T^{4} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
59$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + T^{4} )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{4} \)
71$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{4} \)
79$C_2$ \( ( 1 + T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + T^{4} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_2$ \( ( 1 + T + T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.54422995272007302628291722987, −6.13763933541983825163901961304, −6.13639941030635874873371993620, −5.92650976400184286657049428841, −5.88299681696698616015586660085, −5.43739290253227455999497415915, −5.24853834443573597026867746156, −5.13192353058541479531852847949, −4.74564162473609554576004297098, −4.66127209099612148289433984181, −4.33805947189309395605803513125, −3.90338056539749457643568955549, −3.75134002931906362760479370466, −3.39158470184894353454676696649, −3.24998516280696102666979023987, −3.14017867283196224011842026987, −2.95946830647450877739971147576, −2.92684772818347502238000761039, −2.76575841947642098472929265355, −2.27262546913389382390771439517, −2.03572221756490120652834804377, −1.68411855814244899286713657560, −1.33072446465998332294655024973, −0.898493559848783482792827832102, −0.59442430538662843062705787872, 0.59442430538662843062705787872, 0.898493559848783482792827832102, 1.33072446465998332294655024973, 1.68411855814244899286713657560, 2.03572221756490120652834804377, 2.27262546913389382390771439517, 2.76575841947642098472929265355, 2.92684772818347502238000761039, 2.95946830647450877739971147576, 3.14017867283196224011842026987, 3.24998516280696102666979023987, 3.39158470184894353454676696649, 3.75134002931906362760479370466, 3.90338056539749457643568955549, 4.33805947189309395605803513125, 4.66127209099612148289433984181, 4.74564162473609554576004297098, 5.13192353058541479531852847949, 5.24853834443573597026867746156, 5.43739290253227455999497415915, 5.88299681696698616015586660085, 5.92650976400184286657049428841, 6.13639941030635874873371993620, 6.13763933541983825163901961304, 6.54422995272007302628291722987

Graph of the $Z$-function along the critical line