L(s) = 1 | − 4-s + 95·9-s − 44·11-s + 81·16-s + 6·19-s + 442·29-s + 282·31-s − 95·36-s − 288·41-s + 44·44-s + 371·49-s + 172·59-s − 310·61-s − 225·64-s + 3.17e3·71-s − 6·76-s + 2.58e3·79-s + 5.34e3·81-s + 3.55e3·89-s − 4.18e3·99-s − 1.85e3·101-s + 1.64e3·109-s − 442·116-s + 1.21e3·121-s − 282·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 1/8·4-s + 3.51·9-s − 1.20·11-s + 1.26·16-s + 0.0724·19-s + 2.83·29-s + 1.63·31-s − 0.439·36-s − 1.09·41-s + 0.150·44-s + 1.08·49-s + 0.379·59-s − 0.650·61-s − 0.439·64-s + 5.30·71-s − 0.00905·76-s + 3.68·79-s + 7.33·81-s + 4.23·89-s − 4.24·99-s − 1.82·101-s + 1.44·109-s − 0.353·116-s + 0.909·121-s − 0.204·124-s + 0.000698·127-s + 0.000666·131-s + ⋯ |
Λ(s)=(=((58⋅114)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((58⋅114)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
58⋅114
|
Sign: |
1
|
Analytic conductor: |
69309.8 |
Root analytic conductor: |
4.02809 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 58⋅114, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
10.26051655 |
L(21) |
≈ |
10.26051655 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | | 1 |
| 11 | C1 | (1+pT)4 |
good | 2 | D4×C2 | 1+T2−5p4T4+p6T6+p12T8 |
| 3 | D4×C2 | 1−95T2+3676T4−95p6T6+p12T8 |
| 7 | D4×C2 | 1−53pT2+54552T4−53p7T6+p12T8 |
| 13 | D4×C2 | 1−6688T2+19773454T4−6688p6T6+p12T8 |
| 17 | D4×C2 | 1−5795T2+28665316T4−5795p6T6+p12T8 |
| 19 | D4 | (1−3T+5114T2−3p3T3+p6T4)2 |
| 23 | D4×C2 | 1−2060pT2+857131206T4−2060p7T6+p12T8 |
| 29 | D4 | (1−221T+39564T2−221p3T3+p6T4)2 |
| 31 | D4 | (1−141T+6374T2−141p3T3+p6T4)2 |
| 37 | D4×C2 | 1−30655T2+2910831256T4−30655p6T6+p12T8 |
| 41 | D4 | (1+144T+39598T2+144p3T3+p6T4)2 |
| 43 | D4×C2 | 1−109372T2+15260943894T4−109372p6T6+p12T8 |
| 47 | D4×C2 | 1−329140T2+21975462p2T4−329140p6T6+p12T8 |
| 53 | D4×C2 | 1−345895T2+72577931016T4−345895p6T6+p12T8 |
| 59 | D4 | (1−86T+306510T2−86p3T3+p6T4)2 |
| 61 | D4 | (1+155T+399784T2+155p3T3+p6T4)2 |
| 67 | D4×C2 | 1−976424T2+412501678782T4−976424p6T6+p12T8 |
| 71 | D4 | (1−1587T+1329650T2−1587p3T3+p6T4)2 |
| 73 | D4×C2 | 1−1525024T2+884022947422T4−1525024p6T6+p12T8 |
| 79 | D4 | (1−1294T+1349454T2−1294p3T3+p6T4)2 |
| 83 | D4×C2 | 1−1511816T2+1128809299902T4−1511816p6T6+p12T8 |
| 89 | D4 | (1−1777T+2191512T2−1777p3T3+p6T4)2 |
| 97 | D4×C2 | 1−1842928T2+2417317638046T4−1842928p6T6+p12T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.027931237161871424392257441560, −7.980775333456928087718060525912, −7.73216574883631815875090944214, −7.56588585431064936082739177274, −6.98980004613168497416407331010, −6.85581944849055318227905035804, −6.66123507156817981216777913513, −6.61284201340044846671770821204, −6.08810398602743430818688444520, −5.88275957735464605953974101622, −5.34444877455118688922572436657, −4.96016855131287772733825271484, −4.87008820175990593003947564022, −4.60183254571979644935984580149, −4.56920389883350203371250224072, −3.80884362878297945976619025775, −3.73225685174482483524338269278, −3.46382616359390149130769786299, −3.00890095887306138394614572558, −2.41681227933541063152020160258, −2.09739132238555092272592116348, −1.87125566795404075754337128300, −1.00029397773553886878634320796, −0.832830105290406522855055924617, −0.818520054576956611350462280492,
0.818520054576956611350462280492, 0.832830105290406522855055924617, 1.00029397773553886878634320796, 1.87125566795404075754337128300, 2.09739132238555092272592116348, 2.41681227933541063152020160258, 3.00890095887306138394614572558, 3.46382616359390149130769786299, 3.73225685174482483524338269278, 3.80884362878297945976619025775, 4.56920389883350203371250224072, 4.60183254571979644935984580149, 4.87008820175990593003947564022, 4.96016855131287772733825271484, 5.34444877455118688922572436657, 5.88275957735464605953974101622, 6.08810398602743430818688444520, 6.61284201340044846671770821204, 6.66123507156817981216777913513, 6.85581944849055318227905035804, 6.98980004613168497416407331010, 7.56588585431064936082739177274, 7.73216574883631815875090944214, 7.980775333456928087718060525912, 8.027931237161871424392257441560