Properties

 Label 8-273e4-1.1-c1e4-0-10 Degree $8$ Conductor $5554571841$ Sign $1$ Analytic cond. $22.5818$ Root an. cond. $1.47645$ Motivic weight $1$ Arithmetic yes Rational yes Primitive no Self-dual yes Analytic rank $0$

Origins of factors

Dirichlet series

 L(s)  = 1 + 2-s + 4·3-s − 3·5-s + 4·6-s + 4·7-s + 10·9-s − 3·10-s − 2·11-s + 4·13-s + 4·14-s − 12·15-s − 16-s − 2·17-s + 10·18-s + 7·19-s + 16·21-s − 2·22-s + 3·23-s − 25-s + 4·26-s + 20·27-s + 29-s − 12·30-s + 3·31-s − 32-s − 8·33-s − 2·34-s + ⋯
 L(s)  = 1 + 0.707·2-s + 2.30·3-s − 1.34·5-s + 1.63·6-s + 1.51·7-s + 10/3·9-s − 0.948·10-s − 0.603·11-s + 1.10·13-s + 1.06·14-s − 3.09·15-s − 1/4·16-s − 0.485·17-s + 2.35·18-s + 1.60·19-s + 3.49·21-s − 0.426·22-s + 0.625·23-s − 1/5·25-s + 0.784·26-s + 3.84·27-s + 0.185·29-s − 2.19·30-s + 0.538·31-s − 0.176·32-s − 1.39·33-s − 0.342·34-s + ⋯

Functional equation

\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

 Degree: $$8$$ Conductor: $$3^{4} \cdot 7^{4} \cdot 13^{4}$$ Sign: $1$ Analytic conductor: $$22.5818$$ Root analytic conductor: $$1.47645$$ Motivic weight: $$1$$ Rational: yes Arithmetic: yes Character: Trivial Primitive: no Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(8,\ 3^{4} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )$$

Particular Values

 $$L(1)$$ $$\approx$$ $$6.336376542$$ $$L(\frac12)$$ $$\approx$$ $$6.336376542$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ $$( 1 - T )^{4}$$
7$C_1$ $$( 1 - T )^{4}$$
13$C_1$ $$( 1 - T )^{4}$$
good2$C_2 \wr S_4$ $$1 - T + T^{2} - T^{3} + p T^{4} - p T^{5} + p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8}$$
5$C_2 \wr S_4$ $$1 + 3 T + 2 p T^{2} + p^{2} T^{3} + 74 T^{4} + p^{3} T^{5} + 2 p^{3} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8}$$
11$C_2 \wr S_4$ $$1 + 2 T + 20 T^{2} + 34 T^{3} + 294 T^{4} + 34 p T^{5} + 20 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8}$$
17$C_2 \wr S_4$ $$1 + 2 T + 40 T^{2} + 62 T^{3} + 878 T^{4} + 62 p T^{5} + 40 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8}$$
19$C_2 \wr S_4$ $$1 - 7 T + 64 T^{2} - 351 T^{3} + 1774 T^{4} - 351 p T^{5} + 64 p^{2} T^{6} - 7 p^{3} T^{7} + p^{4} T^{8}$$
23$C_2 \wr S_4$ $$1 - 3 T + 40 T^{2} + 49 T^{3} + 494 T^{4} + 49 p T^{5} + 40 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8}$$
29$C_2 \wr S_4$ $$1 - T + 86 T^{2} - 35 T^{3} + 3378 T^{4} - 35 p T^{5} + 86 p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8}$$
31$C_2 \wr S_4$ $$1 - 3 T - 4 T^{2} - 119 T^{3} + 58 p T^{4} - 119 p T^{5} - 4 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8}$$
37$C_2 \wr S_4$ $$1 - 10 T + 64 T^{2} - 270 T^{3} + 1870 T^{4} - 270 p T^{5} + 64 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8}$$
41$C_2 \wr S_4$ $$1 + 16 T + 4 p T^{2} + 1280 T^{3} + 8694 T^{4} + 1280 p T^{5} + 4 p^{3} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8}$$
43$C_2 \wr S_4$ $$1 - 3 T + 128 T^{2} - 275 T^{3} + 7246 T^{4} - 275 p T^{5} + 128 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8}$$
47$C_2 \wr S_4$ $$1 - 5 T + 148 T^{2} - 689 T^{3} + 9638 T^{4} - 689 p T^{5} + 148 p^{2} T^{6} - 5 p^{3} T^{7} + p^{4} T^{8}$$
53$C_2 \wr S_4$ $$1 - 5 T + 174 T^{2} - 727 T^{3} + 12802 T^{4} - 727 p T^{5} + 174 p^{2} T^{6} - 5 p^{3} T^{7} + p^{4} T^{8}$$
59$C_2 \wr S_4$ $$1 + 20 T + 316 T^{2} + 3236 T^{3} + 28790 T^{4} + 3236 p T^{5} + 316 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8}$$
61$C_2 \wr S_4$ $$1 - 12 T + 180 T^{2} - 1508 T^{3} + 15014 T^{4} - 1508 p T^{5} + 180 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8}$$
67$C_2 \wr S_4$ $$1 + 22 T + 228 T^{2} + 1254 T^{3} + 6086 T^{4} + 1254 p T^{5} + 228 p^{2} T^{6} + 22 p^{3} T^{7} + p^{4} T^{8}$$
71$C_2 \wr S_4$ $$1 + 52 T^{2} + 304 T^{3} + 7478 T^{4} + 304 p T^{5} + 52 p^{2} T^{6} + p^{4} T^{8}$$
73$C_2 \wr S_4$ $$1 + 13 T + 126 T^{2} - 261 T^{3} - 3934 T^{4} - 261 p T^{5} + 126 p^{2} T^{6} + 13 p^{3} T^{7} + p^{4} T^{8}$$
79$C_2 \wr S_4$ $$1 - 11 T + 196 T^{2} - 1167 T^{3} + 15030 T^{4} - 1167 p T^{5} + 196 p^{2} T^{6} - 11 p^{3} T^{7} + p^{4} T^{8}$$
83$C_2 \wr S_4$ $$1 - T + 296 T^{2} - 329 T^{3} + 35310 T^{4} - 329 p T^{5} + 296 p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8}$$
89$C_2 \wr S_4$ $$1 + 5 T + 194 T^{2} + 139 T^{3} + 16986 T^{4} + 139 p T^{5} + 194 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8}$$
97$C_2 \wr S_4$ $$1 + 17 T + 374 T^{2} + 4127 T^{3} + 52210 T^{4} + 4127 p T^{5} + 374 p^{2} T^{6} + 17 p^{3} T^{7} + p^{4} T^{8}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$