L(s) = 1 | + 2·4-s − 2·7-s + 9-s − 4·13-s + 16-s − 25-s − 4·28-s + 2·31-s + 2·36-s + 4·37-s − 2·43-s + 49-s − 8·52-s − 2·63-s − 2·64-s − 2·73-s − 2·79-s + 8·91-s + 2·97-s − 2·100-s − 2·103-s − 2·109-s − 2·112-s − 4·117-s − 2·121-s + 4·124-s + 127-s + ⋯ |
L(s) = 1 | + 2·4-s − 2·7-s + 9-s − 4·13-s + 16-s − 25-s − 4·28-s + 2·31-s + 2·36-s + 4·37-s − 2·43-s + 49-s − 8·52-s − 2·63-s − 2·64-s − 2·73-s − 2·79-s + 8·91-s + 2·97-s − 2·100-s − 2·103-s − 2·109-s − 2·112-s − 4·117-s − 2·121-s + 4·124-s + 127-s + ⋯ |
Λ(s)=(=((34⋅74⋅134)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((34⋅74⋅134)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅74⋅134
|
Sign: |
1
|
Analytic conductor: |
0.000344571 |
Root analytic conductor: |
0.369113 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅74⋅134, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
0.3821155279 |
L(21) |
≈ |
0.3821155279 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C22 | 1−T2+T4 |
| 7 | C2 | (1+T+T2)2 |
| 13 | C1 | (1+T)4 |
good | 2 | C22 | (1−T2+T4)2 |
| 5 | C2×C22 | (1+T2)2(1−T2+T4) |
| 11 | C2 | (1−T+T2)2(1+T+T2)2 |
| 17 | C22 | (1−T2+T4)2 |
| 19 | C22 | (1−T2+T4)2 |
| 23 | C22 | (1−T2+T4)2 |
| 29 | C2×C22 | (1+T2)2(1−T2+T4) |
| 31 | C1×C2 | (1−T)4(1+T+T2)2 |
| 37 | C2 | (1−T+T2)4 |
| 41 | C2×C22 | (1+T2)2(1−T2+T4) |
| 43 | C1×C2 | (1+T)4(1−T+T2)2 |
| 47 | C2×C22 | (1+T2)2(1−T2+T4) |
| 53 | C2×C22 | (1+T2)2(1−T2+T4) |
| 59 | C22 | (1−T2+T4)2 |
| 61 | C22 | (1−T2+T4)2 |
| 67 | C22 | (1−T2+T4)2 |
| 71 | C2×C22 | (1+T2)2(1−T2+T4) |
| 73 | C1×C2 | (1+T)4(1−T+T2)2 |
| 79 | C1×C2 | (1+T)4(1−T+T2)2 |
| 83 | C1×C1 | (1−T)4(1+T)4 |
| 89 | C22 | (1−T2+T4)2 |
| 97 | C1×C2 | (1−T)4(1+T+T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.261984649232099377938399527062, −8.657188688802703417166928955622, −8.231170295604727435905978789256, −8.007607814910001464625463047681, −7.71822027925855096827287524729, −7.51828293431547257653370785905, −7.22864699467596249750084034109, −7.16237759234306319121707143661, −6.79630155492941171133576287977, −6.72194297379546005470977822708, −6.29154362102306211253296752947, −6.11384775433892806220920232724, −6.08316196652020099419979268741, −5.48172561341015488566674130080, −5.07790150804553031667076782138, −4.79555038552527192406901869376, −4.49079745162150097735768487124, −4.21133916261879778572438295852, −3.99770012676609839692866788023, −3.08829971249185133363349303392, −2.92245919067083545283945155759, −2.75991142853910062421931303486, −2.52377090036080620067152435299, −2.09368771117900151686760285036, −1.56870668635183199225822516103,
1.56870668635183199225822516103, 2.09368771117900151686760285036, 2.52377090036080620067152435299, 2.75991142853910062421931303486, 2.92245919067083545283945155759, 3.08829971249185133363349303392, 3.99770012676609839692866788023, 4.21133916261879778572438295852, 4.49079745162150097735768487124, 4.79555038552527192406901869376, 5.07790150804553031667076782138, 5.48172561341015488566674130080, 6.08316196652020099419979268741, 6.11384775433892806220920232724, 6.29154362102306211253296752947, 6.72194297379546005470977822708, 6.79630155492941171133576287977, 7.16237759234306319121707143661, 7.22864699467596249750084034109, 7.51828293431547257653370785905, 7.71822027925855096827287524729, 8.007607814910001464625463047681, 8.231170295604727435905978789256, 8.657188688802703417166928955622, 9.261984649232099377938399527062