Properties

Label 8-2695e4-1.1-c0e4-0-1
Degree $8$
Conductor $5.275\times 10^{13}$
Sign $1$
Analytic cond. $3.27237$
Root an. cond. $1.15973$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 4·11-s + 10·16-s − 16·44-s − 20·64-s − 2·81-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 40·176-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 4·4-s + 4·11-s + 10·16-s − 16·44-s − 20·64-s − 2·81-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 40·176-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{4} \cdot 7^{8} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{4} \cdot 7^{8} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{4} \cdot 7^{8} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(3.27237\)
Root analytic conductor: \(1.15973\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{4} \cdot 7^{8} \cdot 11^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6312079524\)
\(L(\frac12)\) \(\approx\) \(0.6312079524\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_2^2$ \( 1 + T^{4} \)
7 \( 1 \)
11$C_1$ \( ( 1 - T )^{4} \)
good2$C_2$ \( ( 1 + T^{2} )^{4} \)
3$C_2^2$ \( ( 1 + T^{4} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{4} \)
17$C_2$ \( ( 1 + T^{2} )^{4} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
23$C_2$ \( ( 1 + T^{2} )^{4} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
31$C_2^2$ \( ( 1 + T^{4} )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
43$C_2$ \( ( 1 + T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + T^{4} )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{4} \)
59$C_2^2$ \( ( 1 + T^{4} )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
67$C_2$ \( ( 1 + T^{2} )^{4} \)
71$C_2$ \( ( 1 + T^{2} )^{4} \)
73$C_2$ \( ( 1 + T^{2} )^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
83$C_2$ \( ( 1 + T^{2} )^{4} \)
89$C_2^2$ \( ( 1 + T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.53278265704406801652803483653, −5.95679550659563316996676152085, −5.91614494601810307457925902616, −5.85564417915981255348376469200, −5.83724863881151475200761709874, −5.32814233635495795724881399718, −5.15479823618965008461977416085, −4.86142284460666945842415933186, −4.67927151123453615533498238786, −4.54603430815816946420208008426, −4.51440452672631642573194625329, −4.04328241244751956080561598198, −3.93623538959308585142100434302, −3.87834555979006430906335924929, −3.70186479719869404843653232243, −3.52730270832621748606188294582, −3.16902753606273088822438170271, −2.98484281570796194382828405835, −2.70782101406624975259688814205, −1.96939761677621951081599274363, −1.79502511493818856227222277876, −1.35732832162976737532460029248, −1.12356069103734399541537193762, −1.07577267783576213340749759037, −0.49869158035286412600577071118, 0.49869158035286412600577071118, 1.07577267783576213340749759037, 1.12356069103734399541537193762, 1.35732832162976737532460029248, 1.79502511493818856227222277876, 1.96939761677621951081599274363, 2.70782101406624975259688814205, 2.98484281570796194382828405835, 3.16902753606273088822438170271, 3.52730270832621748606188294582, 3.70186479719869404843653232243, 3.87834555979006430906335924929, 3.93623538959308585142100434302, 4.04328241244751956080561598198, 4.51440452672631642573194625329, 4.54603430815816946420208008426, 4.67927151123453615533498238786, 4.86142284460666945842415933186, 5.15479823618965008461977416085, 5.32814233635495795724881399718, 5.83724863881151475200761709874, 5.85564417915981255348376469200, 5.91614494601810307457925902616, 5.95679550659563316996676152085, 6.53278265704406801652803483653

Graph of the $Z$-function along the critical line