Properties

Label 8-24e8-1.1-c4e4-0-10
Degree $8$
Conductor $110075314176$
Sign $1$
Analytic cond. $1.25680\times 10^{7}$
Root an. cond. $7.71628$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 192·13-s + 2.49e3·25-s − 5.17e3·37-s + 4.22e3·49-s − 1.36e4·61-s + 3.60e4·73-s + 4.03e4·97-s + 3.78e4·109-s + 3.09e4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 9.12e4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 1.13·13-s + 3.99·25-s − 3.78·37-s + 1.75·49-s − 3.66·61-s + 6.77·73-s + 4.28·97-s + 3.18·109-s + 2.11·121-s + 6.20e−5·127-s + 5.82e−5·131-s + 5.32e−5·137-s + 5.17e−5·139-s + 4.50e−5·149-s + 4.38e−5·151-s + 4.05e−5·157-s + 3.76e−5·163-s + 3.58e−5·167-s − 3.19·169-s + 3.34e−5·173-s + 3.12e−5·179-s + 3.05e−5·181-s + 2.74e−5·191-s + 2.68e−5·193-s + 2.57e−5·197-s + 2.52e−5·199-s + 2.24e−5·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(5-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.25680\times 10^{7}\)
Root analytic conductor: \(7.71628\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{8} ,\ ( \ : 2, 2, 2, 2 ),\ 1 )\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(5.797012821\)
\(L(\frac12)\) \(\approx\) \(5.797012821\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 - 1248 T^{2} + p^{8} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 2110 T^{2} + p^{8} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 15458 T^{2} + p^{8} T^{4} )^{2} \)
13$C_2$ \( ( 1 + 48 T + p^{4} T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 162624 T^{2} + p^{8} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 150050 T^{2} + p^{8} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 214082 T^{2} + p^{8} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 753312 T^{2} + p^{8} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 1784834 T^{2} + p^{8} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 1294 T + p^{4} T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 4745664 T^{2} + p^{8} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 2165090 T^{2} + p^{8} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 3525502 T^{2} + p^{8} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 6144480 T^{2} + p^{8} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 4272866 T^{2} + p^{8} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 3410 T + p^{4} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 17050274 T^{2} + p^{8} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 9005762 T^{2} + p^{8} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 9024 T + p^{4} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 74851970 T^{2} + p^{8} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 51742174 T^{2} + p^{8} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 106028160 T^{2} + p^{8} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 10080 T + p^{4} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.06166582012755971928421306208, −6.94364935794898079372322973123, −6.54238092101057572233374403446, −6.50422842035854052359955241815, −6.30152200159557313989007711624, −5.96054206201405225216861400309, −5.44135365582639750700146141476, −5.21459401435408158959110211067, −5.20629835339480768887768142335, −4.98390398592847309588920655984, −4.58124478096700401233516258820, −4.53588880789103958250334255877, −4.21085430481760443627733731119, −3.61171825928589859880705044870, −3.36299368921337163124023029187, −3.21962354935771830678031434293, −3.16311381823972345541706287120, −2.63188384635991837874834269895, −2.12757186689696359293029007561, −2.05660524268619477760507451577, −1.84389498373972346112778943912, −1.21406404731698329824711990375, −0.74437379598995550289476029013, −0.70621752834167332121484512154, −0.33674690645780207444027684965, 0.33674690645780207444027684965, 0.70621752834167332121484512154, 0.74437379598995550289476029013, 1.21406404731698329824711990375, 1.84389498373972346112778943912, 2.05660524268619477760507451577, 2.12757186689696359293029007561, 2.63188384635991837874834269895, 3.16311381823972345541706287120, 3.21962354935771830678031434293, 3.36299368921337163124023029187, 3.61171825928589859880705044870, 4.21085430481760443627733731119, 4.53588880789103958250334255877, 4.58124478096700401233516258820, 4.98390398592847309588920655984, 5.20629835339480768887768142335, 5.21459401435408158959110211067, 5.44135365582639750700146141476, 5.96054206201405225216861400309, 6.30152200159557313989007711624, 6.50422842035854052359955241815, 6.54238092101057572233374403446, 6.94364935794898079372322973123, 7.06166582012755971928421306208

Graph of the $Z$-function along the critical line