Properties

Label 8-240e4-1.1-c2e4-0-5
Degree $8$
Conductor $3317760000$
Sign $1$
Analytic cond. $1828.87$
Root an. cond. $2.55724$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 20·5-s + 6·9-s + 250·25-s + 40·29-s − 136·41-s − 120·45-s − 100·49-s + 280·61-s + 27·81-s − 56·89-s − 152·101-s + 664·109-s + 100·121-s − 2.50e3·125-s + 127-s + 131-s + 137-s + 139-s − 800·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 476·169-s + 173-s + 179-s + ⋯
L(s)  = 1  − 4·5-s + 2/3·9-s + 10·25-s + 1.37·29-s − 3.31·41-s − 8/3·45-s − 2.04·49-s + 4.59·61-s + 1/3·81-s − 0.629·89-s − 1.50·101-s + 6.09·109-s + 0.826·121-s − 20·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s − 5.51·145-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 2.81·169-s + 0.00578·173-s + 0.00558·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1828.87\)
Root analytic conductor: \(2.55724\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.9202428371\)
\(L(\frac12)\) \(\approx\) \(0.9202428371\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 - p T^{2} )^{2} \)
5$C_1$ \( ( 1 + p T )^{4} \)
good7$C_2^2$ \( ( 1 + 50 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 50 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )^{2}( 1 + 10 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( ( 1 - 2 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 26 T + p^{2} T^{2} )^{2}( 1 + 26 T + p^{2} T^{2} )^{2} \)
23$C_2^2$ \( ( 1 - 142 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 1730 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 70 T + p^{2} T^{2} )^{2}( 1 + 70 T + p^{2} T^{2} )^{2} \)
41$C_2$ \( ( 1 + 34 T + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 3266 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 4370 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 3314 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 6770 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 70 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 866 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 7010 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 8354 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 10754 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 5666 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 14 T + p^{2} T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 9602 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.360749906418505047838562284666, −8.311415037042425722110129273120, −8.212162270013534552609569121276, −7.956726747835421754676356891465, −7.57431927945968984387644451102, −7.16862734300994808733988595190, −7.06080848304232993813917402938, −7.01670312940128071021899464886, −6.59848215050328086432955099877, −6.52004148627212100388231351397, −5.93973573692471481850988484703, −5.36431970002870372659008372572, −5.11057163567614079567434795130, −4.70790685893848110517086853055, −4.62955903193522964836535192408, −4.48673907745250121837261403761, −3.77608954562206136803403845593, −3.67899639709782197662262748747, −3.61432542854607704245833358546, −3.06675403520346530971455154133, −2.90342375248369253056196526615, −2.14602227401143960124045000904, −1.42357051524213698231789824885, −0.70767964702080034427914363184, −0.42683804608392675375214690442, 0.42683804608392675375214690442, 0.70767964702080034427914363184, 1.42357051524213698231789824885, 2.14602227401143960124045000904, 2.90342375248369253056196526615, 3.06675403520346530971455154133, 3.61432542854607704245833358546, 3.67899639709782197662262748747, 3.77608954562206136803403845593, 4.48673907745250121837261403761, 4.62955903193522964836535192408, 4.70790685893848110517086853055, 5.11057163567614079567434795130, 5.36431970002870372659008372572, 5.93973573692471481850988484703, 6.52004148627212100388231351397, 6.59848215050328086432955099877, 7.01670312940128071021899464886, 7.06080848304232993813917402938, 7.16862734300994808733988595190, 7.57431927945968984387644451102, 7.956726747835421754676356891465, 8.212162270013534552609569121276, 8.311415037042425722110129273120, 8.360749906418505047838562284666

Graph of the $Z$-function along the critical line