L(s) = 1 | + 16·7-s + 6·9-s − 32·23-s + 40·29-s − 88·41-s − 160·43-s + 224·47-s + 60·49-s − 56·61-s + 96·63-s − 128·67-s + 27·81-s − 224·83-s + 312·89-s + 664·101-s + 16·103-s − 192·107-s + 24·109-s + 260·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 512·161-s + ⋯ |
L(s) = 1 | + 16/7·7-s + 2/3·9-s − 1.39·23-s + 1.37·29-s − 2.14·41-s − 3.72·43-s + 4.76·47-s + 1.22·49-s − 0.918·61-s + 1.52·63-s − 1.91·67-s + 1/3·81-s − 2.69·83-s + 3.50·89-s + 6.57·101-s + 0.155·103-s − 1.79·107-s + 0.220·109-s + 2.14·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s − 3.18·161-s + ⋯ |
Λ(s)=(=((220⋅34⋅58)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((220⋅34⋅58)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅34⋅58
|
Sign: |
1
|
Analytic conductor: |
1.82887×107 |
Root analytic conductor: |
8.08673 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 220⋅34⋅58, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
7.885200174 |
L(21) |
≈ |
7.885200174 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | (1−pT2)2 |
| 5 | | 1 |
good | 7 | D4 | (1−8T+66T2−8p2T3+p4T4)2 |
| 11 | D4×C2 | 1−260T2+33894T4−260p4T6+p8T8 |
| 13 | D4×C2 | 1−92T2−17562T4−92p4T6+p8T8 |
| 17 | D4×C2 | 1−700T2+261894T4−700p4T6+p8T8 |
| 19 | D4×C2 | 1−196T2+159654T4−196p4T6+p8T8 |
| 23 | C2 | (1+8T+p2T2)4 |
| 29 | D4 | (1−20T+1734T2−20p2T3+p4T4)2 |
| 31 | D4×C2 | 1−1412T2+2268678T4−1412p4T6+p8T8 |
| 37 | D4×C2 | 1−3292T2+3990p2T4−3292p4T6+p8T8 |
| 41 | D4 | (1+44T+3654T2+44p2T3+p4T4)2 |
| 43 | D4 | (1+80T+4098T2+80p2T3+p4T4)2 |
| 47 | D4 | (1−112T+7362T2−112p2T3+p4T4)2 |
| 53 | D4×C2 | 1−11068T2+46399206T4−11068p4T6+p8T8 |
| 59 | D4×C2 | 1−260T2+462054T4−260p4T6+p8T8 |
| 61 | C2 | (1+14T+p2T2)4 |
| 67 | D4 | (1+64T+7650T2+64p2T3+p4T4)2 |
| 71 | D4×C2 | 1−3140T2+9051462T4−3140p4T6+p8T8 |
| 73 | D4×C2 | 1−13372T2+90439878T4−13372p4T6+p8T8 |
| 79 | D4×C2 | 1−12548T2+107282310T4−12548p4T6+p8T8 |
| 83 | D4 | (1+112T+16866T2+112p2T3+p4T4)2 |
| 89 | D4 | (1−156T+21158T2−156p2T3+p4T4)2 |
| 97 | D4×C2 | 1−16124T2+135775494T4−16124p4T6+p8T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.12451941926999495325739475960, −6.03208844416074999839953101512, −5.82852508366691041337577411083, −5.48498136375244718295027976706, −5.24840496466630231820128582590, −4.99025064222820037379099235186, −4.82537805946898397638851746399, −4.77212974632791444277020069244, −4.59390084572989829555375052813, −4.46380409453654099556027639396, −4.00967924110407174899875285826, −3.85578627108723818195243741431, −3.62315504833312831281628753005, −3.40208833957559305566180680404, −3.19306688227608737086726324480, −2.82183303690798302984447902779, −2.50915735469295351129733853014, −2.25445218293342034125111943773, −1.91518501642645343230119364302, −1.87529242680191164721104249201, −1.52680392142717275354575687927, −1.30207589979741729554202849243, −1.08084890569095120765143974585, −0.46887031296433922842496471490, −0.37735649007442704438870130506,
0.37735649007442704438870130506, 0.46887031296433922842496471490, 1.08084890569095120765143974585, 1.30207589979741729554202849243, 1.52680392142717275354575687927, 1.87529242680191164721104249201, 1.91518501642645343230119364302, 2.25445218293342034125111943773, 2.50915735469295351129733853014, 2.82183303690798302984447902779, 3.19306688227608737086726324480, 3.40208833957559305566180680404, 3.62315504833312831281628753005, 3.85578627108723818195243741431, 4.00967924110407174899875285826, 4.46380409453654099556027639396, 4.59390084572989829555375052813, 4.77212974632791444277020069244, 4.82537805946898397638851746399, 4.99025064222820037379099235186, 5.24840496466630231820128582590, 5.48498136375244718295027976706, 5.82852508366691041337577411083, 6.03208844416074999839953101512, 6.12451941926999495325739475960