L(s) = 1 | + 6·9-s + 32·11-s + 8·17-s − 32·19-s + 40·41-s + 32·43-s + 76·49-s + 128·59-s − 256·67-s − 200·73-s + 27·81-s + 160·83-s − 200·89-s − 56·97-s + 192·99-s − 320·107-s + 344·113-s + 156·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 48·153-s + 157-s + 163-s + ⋯ |
L(s) = 1 | + 2/3·9-s + 2.90·11-s + 8/17·17-s − 1.68·19-s + 0.975·41-s + 0.744·43-s + 1.55·49-s + 2.16·59-s − 3.82·67-s − 2.73·73-s + 1/3·81-s + 1.92·83-s − 2.24·89-s − 0.577·97-s + 1.93·99-s − 2.99·107-s + 3.04·113-s + 1.28·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.313·153-s + 0.00636·157-s + 0.00613·163-s + ⋯ |
Λ(s)=(=((220⋅34⋅58)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((220⋅34⋅58)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅34⋅58
|
Sign: |
1
|
Analytic conductor: |
1.82887×107 |
Root analytic conductor: |
8.08673 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 220⋅34⋅58, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
2.356106551 |
L(21) |
≈ |
2.356106551 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | (1−pT2)2 |
| 5 | | 1 |
good | 7 | C22≀C2 | 1−76T2+3174T4−76p4T6+p8T8 |
| 11 | C2 | (1−8T+p2T2)4 |
| 13 | C22≀C2 | 1−292T2+75366T4−292p4T6+p8T8 |
| 17 | D4 | (1−4T+390T2−4p2T3+p4T4)2 |
| 19 | D4 | (1+16T+738T2+16p2T3+p4T4)2 |
| 23 | C22≀C2 | 1−1636T2+1179654T4−1636p4T6+p8T8 |
| 29 | C22≀C2 | 1−1756T2+1539558T4−1756p4T6+p8T8 |
| 31 | C22≀C2 | 1−460T2−683610T4−460p4T6+p8T8 |
| 37 | C22≀C2 | 1−4612T2+8955366T4−4612p4T6+p8T8 |
| 41 | D4 | (1−20T+1734T2−20p2T3+p4T4)2 |
| 43 | D4 | (1−16T+3330T2−16p2T3+p4T4)2 |
| 47 | C22≀C2 | 1−5284T2+13593798T4−5284p4T6+p8T8 |
| 53 | C22≀C2 | 1−9436T2+38033574T4−9436p4T6+p8T8 |
| 59 | D4 | (1−64T+7554T2−64p2T3+p4T4)2 |
| 61 | C22≀C2 | 1−11332T2+56649510T4−11332p4T6+p8T8 |
| 67 | D4 | (1+128T+12642T2+128p2T3+p4T4)2 |
| 71 | C22≀C2 | 1−11236T2+75307398T4−11236p4T6+p8T8 |
| 73 | D4 | (1+100T+10086T2+100p2T3+p4T4)2 |
| 79 | C22≀C2 | 1−17548T2+151931046T4−17548p4T6+p8T8 |
| 83 | D4 | (1−80T+14610T2−80p2T3+p4T4)2 |
| 89 | D4 | (1+100T+11430T2+100p2T3+p4T4)2 |
| 97 | D4 | (1+28T+12102T2+28p2T3+p4T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.30837432617801267022212997253, −5.99852341962762696348607485779, −5.97453157257984598381081181868, −5.43038858108407311699709910724, −5.40154869760803525790748042018, −5.16790227980571358819034513640, −5.02697131928056970415322728439, −4.36640152925299006331163329614, −4.28995315262312354728827752575, −4.27681553971705068375822292030, −4.14201753226866515679781318300, −3.99386139666729341941121198164, −3.71084394370455828260012367088, −3.40557016520608517243966409130, −3.12864895466725836463511195270, −2.90004736955513344832554781072, −2.46382369906127906732552316927, −2.29250095185819982617812541981, −2.27909898829777739531796402702, −1.46692307426145807498682876334, −1.45555949584384425579074327990, −1.36812250922288461757431683009, −1.10424320769343015670376940787, −0.60679995983731705730875909482, −0.16706220649453262561616381310,
0.16706220649453262561616381310, 0.60679995983731705730875909482, 1.10424320769343015670376940787, 1.36812250922288461757431683009, 1.45555949584384425579074327990, 1.46692307426145807498682876334, 2.27909898829777739531796402702, 2.29250095185819982617812541981, 2.46382369906127906732552316927, 2.90004736955513344832554781072, 3.12864895466725836463511195270, 3.40557016520608517243966409130, 3.71084394370455828260012367088, 3.99386139666729341941121198164, 4.14201753226866515679781318300, 4.27681553971705068375822292030, 4.28995315262312354728827752575, 4.36640152925299006331163329614, 5.02697131928056970415322728439, 5.16790227980571358819034513640, 5.40154869760803525790748042018, 5.43038858108407311699709910724, 5.97453157257984598381081181868, 5.99852341962762696348607485779, 6.30837432617801267022212997253