L(s) = 1 | + 2·3-s + 3·9-s + 4·19-s + 10·27-s − 40·43-s + 28·49-s + 8·57-s − 28·67-s + 4·73-s + 20·81-s + 40·97-s − 14·121-s + 127-s − 80·129-s + 131-s + 137-s + 139-s + 56·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 52·169-s + 12·171-s + 173-s + 179-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 9-s + 0.917·19-s + 1.92·27-s − 6.09·43-s + 4·49-s + 1.05·57-s − 3.42·67-s + 0.468·73-s + 20/9·81-s + 4.06·97-s − 1.27·121-s + 0.0887·127-s − 7.04·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 4.61·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + 0.917·171-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
Λ(s)=(=((220⋅34⋅58)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((220⋅34⋅58)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅34⋅58
|
Sign: |
1
|
Analytic conductor: |
134881. |
Root analytic conductor: |
4.37768 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 220⋅34⋅58, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
6.709823683 |
L(21) |
≈ |
6.709823683 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1−2T+T2−2pT3+p2T4 |
| 5 | | 1 |
good | 7 | C2 | (1−pT2)4 |
| 11 | C22×C22 | (1−6T+25T2−6pT3+p2T4)(1+6T+25T2+6pT3+p2T4) |
| 13 | C2 | (1−pT2)4 |
| 17 | C22×C22 | (1−6T+19T2−6pT3+p2T4)(1+6T+19T2+6pT3+p2T4) |
| 19 | C22 | (1−2T−15T2−2pT3+p2T4)2 |
| 23 | C2 | (1+pT2)4 |
| 29 | C2 | (1+pT2)4 |
| 31 | C2 | (1−pT2)4 |
| 37 | C2 | (1−pT2)4 |
| 41 | C22×C22 | (1−6T−5T2−6pT3+p2T4)(1+6T−5T2+6pT3+p2T4) |
| 43 | C2 | (1+10T+pT2)4 |
| 47 | C2 | (1+pT2)4 |
| 53 | C2 | (1+pT2)4 |
| 59 | C2 | (1−6T+pT2)2(1+6T+pT2)2 |
| 61 | C2 | (1−pT2)4 |
| 67 | C22 | (1+14T+129T2+14pT3+p2T4)2 |
| 71 | C2 | (1+pT2)4 |
| 73 | C22 | (1−2T−69T2−2pT3+p2T4)2 |
| 79 | C2 | (1−pT2)4 |
| 83 | C22×C22 | (1−18T+241T2−18pT3+p2T4)(1+18T+241T2+18pT3+p2T4) |
| 89 | C22×C22 | (1−18T+235T2−18pT3+p2T4)(1+18T+235T2+18pT3+p2T4) |
| 97 | C2 | (1−10T+pT2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.29810652928244661522904869651, −6.23583169142696017185866501008, −6.04309951234332684605495159415, −5.64228958804215514425690321768, −5.61648469931404268091350290471, −5.21243116302503239715992755814, −4.95728637145093159668528647275, −4.94986362810558856804720390121, −4.67956448623710692734432629639, −4.58871857086127085476298681174, −4.20759989122704855256178912501, −3.78296992102574489846456675371, −3.76051372594321453718201247905, −3.51420331642559724177430194377, −3.43319629024432813609016860739, −2.92631142086972117996289086165, −2.84611926641799227065955828054, −2.75574903041701673804387748428, −2.26856364027439428353085544349, −2.11014474745977619101197590496, −1.63666091268367869758796457189, −1.42563044213681355331281555974, −1.40171065968265319313764330264, −0.64392262530148553165785526353, −0.44265595158499176382231464661,
0.44265595158499176382231464661, 0.64392262530148553165785526353, 1.40171065968265319313764330264, 1.42563044213681355331281555974, 1.63666091268367869758796457189, 2.11014474745977619101197590496, 2.26856364027439428353085544349, 2.75574903041701673804387748428, 2.84611926641799227065955828054, 2.92631142086972117996289086165, 3.43319629024432813609016860739, 3.51420331642559724177430194377, 3.76051372594321453718201247905, 3.78296992102574489846456675371, 4.20759989122704855256178912501, 4.58871857086127085476298681174, 4.67956448623710692734432629639, 4.94986362810558856804720390121, 4.95728637145093159668528647275, 5.21243116302503239715992755814, 5.61648469931404268091350290471, 5.64228958804215514425690321768, 6.04309951234332684605495159415, 6.23583169142696017185866501008, 6.29810652928244661522904869651