Properties

Label 8-2400e4-1.1-c1e4-0-16
Degree $8$
Conductor $3.318\times 10^{13}$
Sign $1$
Analytic cond. $134881.$
Root an. cond. $4.37768$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·9-s + 4·19-s − 10·27-s + 40·43-s + 28·49-s − 8·57-s + 28·67-s − 4·73-s + 20·81-s − 40·97-s − 14·121-s + 127-s − 80·129-s + 131-s + 137-s + 139-s − 56·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 52·169-s + 12·171-s + 173-s + 179-s + ⋯
L(s)  = 1  − 1.15·3-s + 9-s + 0.917·19-s − 1.92·27-s + 6.09·43-s + 4·49-s − 1.05·57-s + 3.42·67-s − 0.468·73-s + 20/9·81-s − 4.06·97-s − 1.27·121-s + 0.0887·127-s − 7.04·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 4.61·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + 0.917·171-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(134881.\)
Root analytic conductor: \(4.37768\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.415536525\)
\(L(\frac12)\) \(\approx\) \(2.415536525\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + 2 T + T^{2} + 2 p T^{3} + p^{2} T^{4} \)
5 \( 1 \)
good7$C_2$ \( ( 1 - p T^{2} )^{4} \)
11$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T + 25 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T + 25 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
13$C_2$ \( ( 1 - p T^{2} )^{4} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T + 19 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 - 2 T - 15 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{4} \)
29$C_2$ \( ( 1 + p T^{2} )^{4} \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2$ \( ( 1 - p T^{2} )^{4} \)
41$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T - 5 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T - 5 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{4} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 14 T + 129 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + 2 T - 69 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - p T^{2} )^{4} \)
83$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 241 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 241 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \)
89$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 235 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 235 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.48248092543818157325582404555, −5.96122972579934565921731206447, −5.82580812182862020977746479916, −5.62607484250304244258037464479, −5.60503327659787467048719508317, −5.52433909801697726038225359982, −5.25162710587691776601803982486, −5.01367039147918925453177322656, −4.67915416229772223847771036246, −4.33066385167820391298854058513, −4.21491379731949139334905176191, −4.01364874647016051935317989451, −3.92101143082692565849744152788, −3.82195191732713687406984003218, −3.40987808568640235787289625386, −2.89036653524585394325711291403, −2.79789330247872569365582623185, −2.54368752416887717798543260054, −2.30359772579287131400239658486, −2.08535902990997626546891535378, −1.73931510675138986527278114826, −1.06238918846506052376345789870, −1.00251626289012778177988572536, −0.882235799625464597329887579504, −0.32940969379534012830409059539, 0.32940969379534012830409059539, 0.882235799625464597329887579504, 1.00251626289012778177988572536, 1.06238918846506052376345789870, 1.73931510675138986527278114826, 2.08535902990997626546891535378, 2.30359772579287131400239658486, 2.54368752416887717798543260054, 2.79789330247872569365582623185, 2.89036653524585394325711291403, 3.40987808568640235787289625386, 3.82195191732713687406984003218, 3.92101143082692565849744152788, 4.01364874647016051935317989451, 4.21491379731949139334905176191, 4.33066385167820391298854058513, 4.67915416229772223847771036246, 5.01367039147918925453177322656, 5.25162710587691776601803982486, 5.52433909801697726038225359982, 5.60503327659787467048719508317, 5.62607484250304244258037464479, 5.82580812182862020977746479916, 5.96122972579934565921731206447, 6.48248092543818157325582404555

Graph of the $Z$-function along the critical line