L(s) = 1 | − 4·3-s + 8·9-s + 8·13-s − 24·23-s − 12·27-s + 24·37-s − 32·39-s + 8·47-s + 16·49-s − 16·59-s + 96·69-s + 16·71-s − 40·73-s + 23·81-s + 8·83-s − 8·97-s + 56·107-s + 48·109-s − 96·111-s + 64·117-s − 28·121-s + 127-s + 131-s + 137-s + 139-s − 32·141-s − 64·147-s + ⋯ |
L(s) = 1 | − 2.30·3-s + 8/3·9-s + 2.21·13-s − 5.00·23-s − 2.30·27-s + 3.94·37-s − 5.12·39-s + 1.16·47-s + 16/7·49-s − 2.08·59-s + 11.5·69-s + 1.89·71-s − 4.68·73-s + 23/9·81-s + 0.878·83-s − 0.812·97-s + 5.41·107-s + 4.59·109-s − 9.11·111-s + 5.91·117-s − 2.54·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.69·141-s − 5.27·147-s + ⋯ |
Λ(s)=(=((220⋅34⋅58)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((220⋅34⋅58)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅34⋅58
|
Sign: |
1
|
Analytic conductor: |
134881. |
Root analytic conductor: |
4.37768 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 220⋅34⋅58, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8473810095 |
L(21) |
≈ |
0.8473810095 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 5 | | 1 |
good | 7 | D4×C2 | 1−16T2+130T4−16p2T6+p4T8 |
| 11 | C22 | (1+14T2+p2T4)2 |
| 13 | C2 | (1−2T+pT2)4 |
| 17 | C4×C2 | 1+4T2+70T4+4p2T6+p4T8 |
| 19 | C22 | (1−30T2+p2T4)2 |
| 23 | D4 | (1+12T+80T2+12pT3+p2T4)2 |
| 29 | C22 | (1+6T2+p2T4)2 |
| 31 | C22 | (1−30T2+p2T4)2 |
| 37 | D4 | (1−12T+78T2−12pT3+p2T4)2 |
| 41 | C22 | (1−78T2+p2T4)2 |
| 43 | D4×C2 | 1+32T2+2386T4+32p2T6+p4T8 |
| 47 | D4 | (1−4T+80T2−4pT3+p2T4)2 |
| 53 | D4×C2 | 1−140T2+10006T4−140p2T6+p4T8 |
| 59 | D4 | (1+8T+102T2+8pT3+p2T4)2 |
| 61 | C22 | (1+90T2+p2T4)2 |
| 67 | D4×C2 | 1−96T2+4082T4−96p2T6+p4T8 |
| 71 | D4 | (1−8T+150T2−8pT3+p2T4)2 |
| 73 | C4 | (1+20T+214T2+20pT3+p2T4)2 |
| 79 | D4×C2 | 1−140T2+12774T4−140p2T6+p4T8 |
| 83 | D4 | (1−4T+120T2−4pT3+p2T4)2 |
| 89 | D4×C2 | 1−68T2+8806T4−68p2T6+p4T8 |
| 97 | C4 | (1+4T−90T2+4pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.17713149860678643331383221510, −6.10845405453645328375740149373, −6.03307106001452051527081657612, −5.98754320303236535099207583758, −5.74352270801399392139480721057, −5.38245422755165215201302202957, −5.26374552899452608100256393839, −4.88336318225739096748002627665, −4.77805871966407091685237281692, −4.27482419271497037993503947796, −4.15407567677816896205566677103, −4.15051117965543369882137859568, −4.09639996082715371386178623933, −3.73802989254181979652992466693, −3.43392920585577862370235261903, −3.09404254666291495435056255886, −2.87026187545546930864971226942, −2.41219003025907057732557534086, −2.09894035753398415400069256035, −2.03423143976675607824762267787, −1.70051347992213991493081183780, −1.18943428194336203479094081616, −0.999532709386729663943355767692, −0.63659813908560042971152972401, −0.25946295004829184477291133831,
0.25946295004829184477291133831, 0.63659813908560042971152972401, 0.999532709386729663943355767692, 1.18943428194336203479094081616, 1.70051347992213991493081183780, 2.03423143976675607824762267787, 2.09894035753398415400069256035, 2.41219003025907057732557534086, 2.87026187545546930864971226942, 3.09404254666291495435056255886, 3.43392920585577862370235261903, 3.73802989254181979652992466693, 4.09639996082715371386178623933, 4.15051117965543369882137859568, 4.15407567677816896205566677103, 4.27482419271497037993503947796, 4.77805871966407091685237281692, 4.88336318225739096748002627665, 5.26374552899452608100256393839, 5.38245422755165215201302202957, 5.74352270801399392139480721057, 5.98754320303236535099207583758, 6.03307106001452051527081657612, 6.10845405453645328375740149373, 6.17713149860678643331383221510