Properties

Label 8-2400e4-1.1-c1e4-0-12
Degree $8$
Conductor $3.318\times 10^{13}$
Sign $1$
Analytic cond. $134881.$
Root an. cond. $4.37768$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 8·9-s + 8·13-s − 24·23-s − 12·27-s + 24·37-s − 32·39-s + 8·47-s + 16·49-s − 16·59-s + 96·69-s + 16·71-s − 40·73-s + 23·81-s + 8·83-s − 8·97-s + 56·107-s + 48·109-s − 96·111-s + 64·117-s − 28·121-s + 127-s + 131-s + 137-s + 139-s − 32·141-s − 64·147-s + ⋯
L(s)  = 1  − 2.30·3-s + 8/3·9-s + 2.21·13-s − 5.00·23-s − 2.30·27-s + 3.94·37-s − 5.12·39-s + 1.16·47-s + 16/7·49-s − 2.08·59-s + 11.5·69-s + 1.89·71-s − 4.68·73-s + 23/9·81-s + 0.878·83-s − 0.812·97-s + 5.41·107-s + 4.59·109-s − 9.11·111-s + 5.91·117-s − 2.54·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.69·141-s − 5.27·147-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(134881.\)
Root analytic conductor: \(4.37768\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.8473810095\)
\(L(\frac12)\) \(\approx\) \(0.8473810095\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
5 \( 1 \)
good7$D_4\times C_2$ \( 1 - 16 T^{2} + 130 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
17$C_4\times C_2$ \( 1 + 4 T^{2} + 70 T^{4} + 4 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 - 30 T^{2} + p^{2} T^{4} )^{2} \)
23$D_{4}$ \( ( 1 + 12 T + 80 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 30 T^{2} + p^{2} T^{4} )^{2} \)
37$D_{4}$ \( ( 1 - 12 T + 78 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 78 T^{2} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 + 32 T^{2} + 2386 T^{4} + 32 p^{2} T^{6} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 - 4 T + 80 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 - 140 T^{2} + 10006 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + 8 T + 102 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 90 T^{2} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 96 T^{2} + 4082 T^{4} - 96 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - 8 T + 150 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_4$ \( ( 1 + 20 T + 214 T^{2} + 20 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 - 140 T^{2} + 12774 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 - 4 T + 120 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 68 T^{2} + 8806 T^{4} - 68 p^{2} T^{6} + p^{4} T^{8} \)
97$C_4$ \( ( 1 + 4 T - 90 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.17713149860678643331383221510, −6.10845405453645328375740149373, −6.03307106001452051527081657612, −5.98754320303236535099207583758, −5.74352270801399392139480721057, −5.38245422755165215201302202957, −5.26374552899452608100256393839, −4.88336318225739096748002627665, −4.77805871966407091685237281692, −4.27482419271497037993503947796, −4.15407567677816896205566677103, −4.15051117965543369882137859568, −4.09639996082715371386178623933, −3.73802989254181979652992466693, −3.43392920585577862370235261903, −3.09404254666291495435056255886, −2.87026187545546930864971226942, −2.41219003025907057732557534086, −2.09894035753398415400069256035, −2.03423143976675607824762267787, −1.70051347992213991493081183780, −1.18943428194336203479094081616, −0.999532709386729663943355767692, −0.63659813908560042971152972401, −0.25946295004829184477291133831, 0.25946295004829184477291133831, 0.63659813908560042971152972401, 0.999532709386729663943355767692, 1.18943428194336203479094081616, 1.70051347992213991493081183780, 2.03423143976675607824762267787, 2.09894035753398415400069256035, 2.41219003025907057732557534086, 2.87026187545546930864971226942, 3.09404254666291495435056255886, 3.43392920585577862370235261903, 3.73802989254181979652992466693, 4.09639996082715371386178623933, 4.15051117965543369882137859568, 4.15407567677816896205566677103, 4.27482419271497037993503947796, 4.77805871966407091685237281692, 4.88336318225739096748002627665, 5.26374552899452608100256393839, 5.38245422755165215201302202957, 5.74352270801399392139480721057, 5.98754320303236535099207583758, 6.03307106001452051527081657612, 6.10845405453645328375740149373, 6.17713149860678643331383221510

Graph of the $Z$-function along the critical line