Properties

Label 8-2400e4-1.1-c1e4-0-10
Degree $8$
Conductor $3.318\times 10^{13}$
Sign $1$
Analytic cond. $134881.$
Root an. cond. $4.37768$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·9-s + 8·13-s − 24·37-s + 20·49-s − 8·61-s + 24·73-s − 5·81-s − 40·97-s − 72·109-s + 16·117-s − 28·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 12·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  + 2/3·9-s + 2.21·13-s − 3.94·37-s + 20/7·49-s − 1.02·61-s + 2.80·73-s − 5/9·81-s − 4.06·97-s − 6.89·109-s + 1.47·117-s − 2.54·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.923·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(134881.\)
Root analytic conductor: \(4.37768\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.303982652\)
\(L(\frac12)\) \(\approx\) \(2.303982652\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5 \( 1 \)
good7$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
17$C_2$ \( ( 1 - p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 110 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 110 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 158 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 110 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.52110195410064776192899065615, −6.01028574904119782214331278579, −5.92956718010253861627995489584, −5.84621947600543886534596801369, −5.46893557662991621026037465272, −5.29589590278807612455507150212, −5.21040680626613293114808581235, −4.99808145327271199441777000039, −4.71530273667890084231236815713, −4.44762367533319046171868414024, −4.00561398072340331187026887735, −3.86008397167915270229148299881, −3.73000800221805211686344178897, −3.71426032775093974215492601380, −3.69659114098635624243310081668, −2.91417210349562252921681796758, −2.79325014820246496794159047774, −2.61928168166826222247937395094, −2.46163869772699802124679945956, −1.80456602442220595474995627192, −1.58584850436301802763179010709, −1.38704411029660159039835411193, −1.36855541349147096405824818904, −0.75387623174760378231378370716, −0.25400413849612438516472408089, 0.25400413849612438516472408089, 0.75387623174760378231378370716, 1.36855541349147096405824818904, 1.38704411029660159039835411193, 1.58584850436301802763179010709, 1.80456602442220595474995627192, 2.46163869772699802124679945956, 2.61928168166826222247937395094, 2.79325014820246496794159047774, 2.91417210349562252921681796758, 3.69659114098635624243310081668, 3.71426032775093974215492601380, 3.73000800221805211686344178897, 3.86008397167915270229148299881, 4.00561398072340331187026887735, 4.44762367533319046171868414024, 4.71530273667890084231236815713, 4.99808145327271199441777000039, 5.21040680626613293114808581235, 5.29589590278807612455507150212, 5.46893557662991621026037465272, 5.84621947600543886534596801369, 5.92956718010253861627995489584, 6.01028574904119782214331278579, 6.52110195410064776192899065615

Graph of the $Z$-function along the critical line