L(s) = 1 | − 81-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯ |
L(s) = 1 | − 81-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯ |
Λ(s)=(=((220⋅34⋅58)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((220⋅34⋅58)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅34⋅58
|
Sign: |
1
|
Analytic conductor: |
2.05813 |
Root analytic conductor: |
1.09442 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 220⋅34⋅58, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
1.101406186 |
L(21) |
≈ |
1.101406186 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.60154330534272279093343668521, −6.15258798723087000736068013009, −6.05318746570498503114681116315, −5.96399062176313524658500968717, −5.94233026105446575305931767642, −5.61195730519488714905864088034, −5.18001707253011900970451449656, −5.13959122435953503910722904017, −4.85542105385135321674884481014, −4.68960534326432404976060852232, −4.54893905190806380733199359028, −4.15376682563979416024946002433, −4.15350253278408281764083778630, −3.58237198836779789491750069634, −3.50511097719140906810486465285, −3.43716643650274088073445852885, −3.21863842390714793085334582859, −2.55292450455394578900997986732, −2.52685950090802457999639509183, −2.45977424059046015242562918504, −2.07378983996711400094650400249, −1.60592898770165627623366021782, −1.34262124958448198976749591894, −1.17123296346822384525524528466, −0.49538494907228287729740016498,
0.49538494907228287729740016498, 1.17123296346822384525524528466, 1.34262124958448198976749591894, 1.60592898770165627623366021782, 2.07378983996711400094650400249, 2.45977424059046015242562918504, 2.52685950090802457999639509183, 2.55292450455394578900997986732, 3.21863842390714793085334582859, 3.43716643650274088073445852885, 3.50511097719140906810486465285, 3.58237198836779789491750069634, 4.15350253278408281764083778630, 4.15376682563979416024946002433, 4.54893905190806380733199359028, 4.68960534326432404976060852232, 4.85542105385135321674884481014, 5.13959122435953503910722904017, 5.18001707253011900970451449656, 5.61195730519488714905864088034, 5.94233026105446575305931767642, 5.96399062176313524658500968717, 6.05318746570498503114681116315, 6.15258798723087000736068013009, 6.60154330534272279093343668521