Properties

Label 8-2400e4-1.1-c0e4-0-1
Degree $8$
Conductor $3.318\times 10^{13}$
Sign $1$
Analytic cond. $2.05813$
Root an. cond. $1.09442$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 81-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯
L(s)  = 1  − 81-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(2.05813\)
Root analytic conductor: \(1.09442\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.101406186\)
\(L(\frac12)\) \(\approx\) \(1.101406186\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + T^{4} \)
5 \( 1 \)
good7$C_2^2$ \( ( 1 + T^{4} )^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
13$C_2$ \( ( 1 + T^{2} )^{4} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
19$C_2$ \( ( 1 + T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + T^{4} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
31$C_2$ \( ( 1 + T^{2} )^{4} \)
37$C_2$ \( ( 1 + T^{2} )^{4} \)
41$C_2$ \( ( 1 + T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + T^{4} )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
61$C_2$ \( ( 1 + T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + T^{4} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_2$ \( ( 1 + T^{2} )^{4} \)
79$C_2$ \( ( 1 + T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + T^{4} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_2$ \( ( 1 + T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.60154330534272279093343668521, −6.15258798723087000736068013009, −6.05318746570498503114681116315, −5.96399062176313524658500968717, −5.94233026105446575305931767642, −5.61195730519488714905864088034, −5.18001707253011900970451449656, −5.13959122435953503910722904017, −4.85542105385135321674884481014, −4.68960534326432404976060852232, −4.54893905190806380733199359028, −4.15376682563979416024946002433, −4.15350253278408281764083778630, −3.58237198836779789491750069634, −3.50511097719140906810486465285, −3.43716643650274088073445852885, −3.21863842390714793085334582859, −2.55292450455394578900997986732, −2.52685950090802457999639509183, −2.45977424059046015242562918504, −2.07378983996711400094650400249, −1.60592898770165627623366021782, −1.34262124958448198976749591894, −1.17123296346822384525524528466, −0.49538494907228287729740016498, 0.49538494907228287729740016498, 1.17123296346822384525524528466, 1.34262124958448198976749591894, 1.60592898770165627623366021782, 2.07378983996711400094650400249, 2.45977424059046015242562918504, 2.52685950090802457999639509183, 2.55292450455394578900997986732, 3.21863842390714793085334582859, 3.43716643650274088073445852885, 3.50511097719140906810486465285, 3.58237198836779789491750069634, 4.15350253278408281764083778630, 4.15376682563979416024946002433, 4.54893905190806380733199359028, 4.68960534326432404976060852232, 4.85542105385135321674884481014, 5.13959122435953503910722904017, 5.18001707253011900970451449656, 5.61195730519488714905864088034, 5.94233026105446575305931767642, 5.96399062176313524658500968717, 6.05318746570498503114681116315, 6.15258798723087000736068013009, 6.60154330534272279093343668521

Graph of the $Z$-function along the critical line