Properties

Label 8-2340e4-1.1-c1e4-0-12
Degree $8$
Conductor $2.998\times 10^{13}$
Sign $1$
Analytic cond. $121891.$
Root an. cond. $4.32261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·13-s + 24·31-s − 4·37-s + 8·61-s + 8·67-s + 36·73-s − 16·79-s + 28·97-s + 44·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 82·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 3.32·13-s + 4.31·31-s − 0.657·37-s + 1.02·61-s + 0.977·67-s + 4.21·73-s − 1.80·79-s + 2.84·97-s + 4.21·109-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(121891.\)
Root analytic conductor: \(4.32261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.466332398\)
\(L(\frac12)\) \(\approx\) \(3.466332398\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2^2$ \( 1 + T^{4} \)
13$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
11$C_2^3$ \( 1 - 206 T^{4} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 + 16 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^3$ \( 1 + 994 T^{4} + p^{4} T^{8} \)
43$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 1918 T^{4} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 104 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 - 4046 T^{4} + p^{4} T^{8} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^3$ \( 1 - 3998 T^{4} + p^{4} T^{8} \)
73$C_2^2$ \( ( 1 - 18 T + 162 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
83$C_2^3$ \( 1 + 8722 T^{4} + p^{4} T^{8} \)
89$C_2^3$ \( 1 + 4322 T^{4} + p^{4} T^{8} \)
97$C_2^2$ \( ( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.34616624160175317117862987412, −6.33926652332986210706872190765, −5.91410360291156811861583553259, −5.84996593310017166971536870797, −5.47104871635169696418280885024, −5.13644582759651307209736871374, −5.10217726810590971530042474673, −4.91645326347846769853672612901, −4.74065400831842140687790081279, −4.66974104326001042031070767239, −4.22798150948298739955702350555, −4.13744797566895491783551136216, −3.90850575028689153603819927014, −3.51333203036227568189253055405, −3.14110129035801284633297911549, −3.08399829351685933466716933406, −2.87160809641456649544138627828, −2.47261978423434892087305486331, −2.28497721499328196262736328232, −2.15799169824966320015913544463, −1.96907502518328916185172075376, −1.43225110954599236814652020384, −0.870072566747073790065392998315, −0.68223271897556611931616465208, −0.42329524986312848674696266031, 0.42329524986312848674696266031, 0.68223271897556611931616465208, 0.870072566747073790065392998315, 1.43225110954599236814652020384, 1.96907502518328916185172075376, 2.15799169824966320015913544463, 2.28497721499328196262736328232, 2.47261978423434892087305486331, 2.87160809641456649544138627828, 3.08399829351685933466716933406, 3.14110129035801284633297911549, 3.51333203036227568189253055405, 3.90850575028689153603819927014, 4.13744797566895491783551136216, 4.22798150948298739955702350555, 4.66974104326001042031070767239, 4.74065400831842140687790081279, 4.91645326347846769853672612901, 5.10217726810590971530042474673, 5.13644582759651307209736871374, 5.47104871635169696418280885024, 5.84996593310017166971536870797, 5.91410360291156811861583553259, 6.33926652332986210706872190765, 6.34616624160175317117862987412

Graph of the $Z$-function along the critical line