| L(s) = 1 | − 2·9-s + 4·11-s − 16-s + 4·43-s − 4·59-s + 2·81-s + 4·83-s + 4·97-s − 8·99-s − 4·107-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 2·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s − 4·176-s + 179-s + 181-s + 191-s + ⋯ |
| L(s) = 1 | − 2·9-s + 4·11-s − 16-s + 4·43-s − 4·59-s + 2·81-s + 4·83-s + 4·97-s − 8·99-s − 4·107-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 2·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s − 4·176-s + 179-s + 181-s + 191-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.575660539\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.575660539\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.50297816248052004954884610195, −6.32648605831513192826945839931, −6.27438554496971190063435593652, −6.15325166178161524119264381249, −5.82191362167887475655326859188, −5.54070834202811906911223800336, −5.53092259209884304349413457502, −5.20897275966266805864975152228, −4.72662067682250487955245300164, −4.59056626578755433530239736212, −4.48876834213203390565649661375, −4.29289097517612842711998691876, −4.11117114495189632421553558691, −3.61010819202117201767602411509, −3.59478408545825812857662888340, −3.42157201302241303239136635156, −3.23508923210504710431662780632, −2.75412850304876361118392196069, −2.57156999374206800551624852836, −2.31740177464408923026737101308, −1.96139932877948714722074248152, −1.79918209705109243525419750463, −1.25969412431646986805119447180, −1.08295442231937820697243018069, −0.67291955124161458460213218934,
0.67291955124161458460213218934, 1.08295442231937820697243018069, 1.25969412431646986805119447180, 1.79918209705109243525419750463, 1.96139932877948714722074248152, 2.31740177464408923026737101308, 2.57156999374206800551624852836, 2.75412850304876361118392196069, 3.23508923210504710431662780632, 3.42157201302241303239136635156, 3.59478408545825812857662888340, 3.61010819202117201767602411509, 4.11117114495189632421553558691, 4.29289097517612842711998691876, 4.48876834213203390565649661375, 4.59056626578755433530239736212, 4.72662067682250487955245300164, 5.20897275966266805864975152228, 5.53092259209884304349413457502, 5.54070834202811906911223800336, 5.82191362167887475655326859188, 6.15325166178161524119264381249, 6.27438554496971190063435593652, 6.32648605831513192826945839931, 6.50297816248052004954884610195