Properties

Label 8-2178e4-1.1-c2e4-0-7
Degree $8$
Conductor $2.250\times 10^{13}$
Sign $1$
Analytic cond. $1.24042\times 10^{7}$
Root an. cond. $7.70364$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 24·7-s − 48·13-s + 12·16-s + 24·19-s + 52·25-s − 96·28-s + 76·31-s − 44·37-s − 144·43-s + 170·49-s + 192·52-s + 336·61-s − 32·64-s − 140·67-s + 192·73-s − 96·76-s − 312·79-s − 1.15e3·91-s − 628·97-s − 208·100-s − 412·103-s + 288·112-s − 304·124-s + 127-s + 131-s + 576·133-s + ⋯
L(s)  = 1  − 4-s + 24/7·7-s − 3.69·13-s + 3/4·16-s + 1.26·19-s + 2.07·25-s − 3.42·28-s + 2.45·31-s − 1.18·37-s − 3.34·43-s + 3.46·49-s + 3.69·52-s + 5.50·61-s − 1/2·64-s − 2.08·67-s + 2.63·73-s − 1.26·76-s − 3.94·79-s − 12.6·91-s − 6.47·97-s − 2.07·100-s − 4·103-s + 18/7·112-s − 2.45·124-s + 0.00787·127-s + 0.00763·131-s + 4.33·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(1.24042\times 10^{7}\)
Root analytic conductor: \(7.70364\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 11^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(4.706893070\)
\(L(\frac12)\) \(\approx\) \(4.706893070\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T^{2} )^{2} \)
3 \( 1 \)
11 \( 1 \)
good5$C_2^2$ \( ( 1 - 26 T^{2} + p^{4} T^{4} )^{2} \)
7$D_{4}$ \( ( 1 - 12 T + 131 T^{2} - 12 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
13$D_{4}$ \( ( 1 + 24 T + 374 T^{2} + 24 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 362 T^{2} + p^{4} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 - 12 T + 251 T^{2} - 12 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 1168 T^{2} + 857538 T^{4} - 1168 p^{4} T^{6} + p^{8} T^{8} \)
29$D_4\times C_2$ \( 1 - 1816 T^{2} + 1679154 T^{4} - 1816 p^{4} T^{6} + p^{8} T^{8} \)
31$D_{4}$ \( ( 1 - 38 T + 2175 T^{2} - 38 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
37$D_{4}$ \( ( 1 + 22 T + 1131 T^{2} + 22 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 1288 T^{2} + 5304210 T^{4} - 1288 p^{4} T^{6} + p^{8} T^{8} \)
43$D_{4}$ \( ( 1 + 72 T + 4022 T^{2} + 72 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 7072 T^{2} + 10050 p^{2} T^{4} - 7072 p^{4} T^{6} + p^{8} T^{8} \)
53$D_4\times C_2$ \( 1 - 8608 T^{2} + 32750178 T^{4} - 8608 p^{4} T^{6} + p^{8} T^{8} \)
59$D_4\times C_2$ \( 1 - 1168 T^{2} + 105570 T^{4} - 1168 p^{4} T^{6} + p^{8} T^{8} \)
61$D_{4}$ \( ( 1 - 168 T + 14423 T^{2} - 168 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 + 70 T + 4911 T^{2} + 70 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 19540 T^{2} + 146248614 T^{4} - 19540 p^{4} T^{6} + p^{8} T^{8} \)
73$D_{4}$ \( ( 1 - 96 T + 11879 T^{2} - 96 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 156 T + 17699 T^{2} + 156 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 88 T^{2} - 93260622 T^{4} - 88 p^{4} T^{6} + p^{8} T^{8} \)
89$D_4\times C_2$ \( 1 - 14212 T^{2} + 173484486 T^{4} - 14212 p^{4} T^{6} + p^{8} T^{8} \)
97$C_2$ \( ( 1 + 157 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.51788055989759225083541646478, −5.68994743453275720213929765461, −5.48505093570208442718526505188, −5.43649439534158023074465673311, −5.43557453370894057131785616336, −5.00373403941848695071657916855, −4.92103111659303846214720616611, −4.87091945578879226802871920194, −4.85310160448897351425398829860, −4.32789779941882144862416461957, −4.18020053070680596429323551411, −4.13119221831281195522085479899, −3.92573748483278994527709254692, −3.11572721926793210273007188755, −2.98499641913814051578330046907, −2.91670794450220713934494322859, −2.85899656193795513562558602862, −2.37096485048333367647947922109, −1.94774561568431317399401961223, −1.73786430351044134878753424461, −1.65726475509605953516492095471, −1.27506697926658778619393941792, −0.978085422736422978245943247718, −0.49803572965983433881666009230, −0.32297895357631536346402407215, 0.32297895357631536346402407215, 0.49803572965983433881666009230, 0.978085422736422978245943247718, 1.27506697926658778619393941792, 1.65726475509605953516492095471, 1.73786430351044134878753424461, 1.94774561568431317399401961223, 2.37096485048333367647947922109, 2.85899656193795513562558602862, 2.91670794450220713934494322859, 2.98499641913814051578330046907, 3.11572721926793210273007188755, 3.92573748483278994527709254692, 4.13119221831281195522085479899, 4.18020053070680596429323551411, 4.32789779941882144862416461957, 4.85310160448897351425398829860, 4.87091945578879226802871920194, 4.92103111659303846214720616611, 5.00373403941848695071657916855, 5.43557453370894057131785616336, 5.43649439534158023074465673311, 5.48505093570208442718526505188, 5.68994743453275720213929765461, 6.51788055989759225083541646478

Graph of the $Z$-function along the critical line