L(s) = 1 | + 136·13-s − 50·25-s − 136·37-s − 572·49-s + 1.96e3·61-s − 1.32e3·73-s + 880·97-s + 7.63e3·109-s − 620·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2.77e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | + 2.90·13-s − 2/5·25-s − 0.604·37-s − 1.66·49-s + 4.12·61-s − 2.12·73-s + 0.921·97-s + 6.71·109-s − 0.465·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 1.26·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
2.63802×108 |
Root analytic conductor: |
11.2891 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
10.32070895 |
L(21) |
≈ |
10.32070895 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | (1+p2T2)2 |
good | 7 | C2 | (1−20T+p3T2)2(1+20T+p3T2)2 |
| 11 | C22 | (1+310T2+p6T4)2 |
| 13 | C2 | (1−34T+p3T2)4 |
| 17 | C22 | (1−9817T2+p6T4)2 |
| 19 | C22 | (1+565T2+p6T4)2 |
| 23 | C22 | (1+15259T2+p6T4)2 |
| 29 | C22 | (1−32902T2+p6T4)2 |
| 31 | C22 | (1−27755T2+p6T4)2 |
| 37 | C2 | (1+34T+p3T2)4 |
| 41 | C22 | (1−47842T2+p6T4)2 |
| 43 | C22 | (1+56458T2+p6T4)2 |
| 47 | C22 | (1+1714T2+p6T4)2 |
| 53 | C22 | (1−266425T2+p6T4)2 |
| 59 | C22 | (1+185530T2+p6T4)2 |
| 61 | C2 | (1−491T+p3T2)4 |
| 67 | C2 | (1−16pT+p3T2)2(1+16pT+p3T2)2 |
| 71 | C22 | (1+318334T2+p6T4)2 |
| 73 | C2 | (1+332T+p3T2)4 |
| 79 | C22 | (1−568691T2+p6T4)2 |
| 83 | C22 | (1+426211T2+p6T4)2 |
| 89 | C22 | (1−1078162T2+p6T4)2 |
| 97 | C2 | (1−220T+p3T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.09613940057447487734595168147, −5.74787454892961606393451294179, −5.65618280374295592788796641461, −5.59925207376098885779685272937, −5.49788852837141822992749053261, −4.82631638637749438830547276805, −4.73949415897019639968202398453, −4.61630544035872720539905142596, −4.55621522498966696102235900688, −3.98778587672961202349029275840, −3.75438954430623237107791584446, −3.72619475149358971151461828209, −3.55737749527986171978653466804, −3.31127117298581055638806351747, −3.08809456885638032217718731853, −2.68297158684374484961690943871, −2.57326942431656596688161863464, −2.10776770179782581120239491950, −1.77104423473474554280871243872, −1.68669400458992056809699039025, −1.56980052703751923465001275090, −0.981143262707105799552505719427, −0.78287514180235501315856590759, −0.59887525882974462965664434984, −0.32974355411708018458060083078,
0.32974355411708018458060083078, 0.59887525882974462965664434984, 0.78287514180235501315856590759, 0.981143262707105799552505719427, 1.56980052703751923465001275090, 1.68669400458992056809699039025, 1.77104423473474554280871243872, 2.10776770179782581120239491950, 2.57326942431656596688161863464, 2.68297158684374484961690943871, 3.08809456885638032217718731853, 3.31127117298581055638806351747, 3.55737749527986171978653466804, 3.72619475149358971151461828209, 3.75438954430623237107791584446, 3.98778587672961202349029275840, 4.55621522498966696102235900688, 4.61630544035872720539905142596, 4.73949415897019639968202398453, 4.82631638637749438830547276805, 5.49788852837141822992749053261, 5.59925207376098885779685272937, 5.65618280374295592788796641461, 5.74787454892961606393451294179, 6.09613940057447487734595168147