L(s) = 1 | − 32·13-s + 10·25-s + 8·37-s + 196·49-s − 124·61-s − 296·73-s − 128·97-s + 388·109-s + 268·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 36·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | − 2.46·13-s + 2/5·25-s + 8/37·37-s + 4·49-s − 2.03·61-s − 4.05·73-s − 1.31·97-s + 3.55·109-s + 2.21·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 0.213·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
1.19992×107 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
2.158021922 |
L(21) |
≈ |
2.158021922 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | (1−pT2)2 |
good | 7 | C1×C1 | (1−pT)4(1+pT)4 |
| 11 | C22 | (1−134T2+p4T4)2 |
| 13 | C2 | (1+8T+p2T2)4 |
| 17 | C22 | (1+533T2+p4T4)2 |
| 19 | C22 | (1−587T2+p4T4)2 |
| 23 | C22 | (1−1031T2+p4T4)2 |
| 29 | C22 | (1+962T2+p4T4)2 |
| 31 | C22 | (1−707T2+p4T4)2 |
| 37 | C2 | (1−2T+p2T2)4 |
| 41 | C22 | (1+1742T2+p4T4)2 |
| 43 | C22 | (1−3158T2+p4T4)2 |
| 47 | C22 | (1−3986T2+p4T4)2 |
| 53 | C22 | (1+5213T2+p4T4)2 |
| 59 | C22 | (1−5234T2+p4T4)2 |
| 61 | C2 | (1+31T+p2T2)4 |
| 67 | C22 | (1−4118T2+p4T4)2 |
| 71 | C22 | (1−9974T2+p4T4)2 |
| 73 | C2 | (1+74T+p2T2)4 |
| 79 | C22 | (1−1547T2+p4T4)2 |
| 83 | C22 | (1−7703T2+p4T4)2 |
| 89 | C22 | (1+11342T2+p4T4)2 |
| 97 | C2 | (1+32T+p2T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.21895743555541327273323448301, −5.94145548463962808516832303388, −5.89927398324106580499741039614, −5.62517647176238080416208205804, −5.51245406969399305721300450409, −5.10895319406599392552444750615, −4.99257406280318301221567393053, −4.75198028039488891325858033454, −4.51717659651994571545481954558, −4.43699503185256766995682961944, −4.18981099596546276331650643148, −3.94377149640341345216257786874, −3.67479878854967632914320046839, −3.29334637581889975181995960688, −3.13028483026825790248267859379, −2.79940763442211789076747369219, −2.70864148126329691178979581925, −2.36514137020532690840035136381, −2.28264846135324403622180586183, −1.77987761084753340742937143830, −1.70625317469290917021147609729, −1.16017625810997476764188873012, −0.937447228610896350048525463048, −0.42948900672542783707939569905, −0.25796796134412198210283112372,
0.25796796134412198210283112372, 0.42948900672542783707939569905, 0.937447228610896350048525463048, 1.16017625810997476764188873012, 1.70625317469290917021147609729, 1.77987761084753340742937143830, 2.28264846135324403622180586183, 2.36514137020532690840035136381, 2.70864148126329691178979581925, 2.79940763442211789076747369219, 3.13028483026825790248267859379, 3.29334637581889975181995960688, 3.67479878854967632914320046839, 3.94377149640341345216257786874, 4.18981099596546276331650643148, 4.43699503185256766995682961944, 4.51717659651994571545481954558, 4.75198028039488891325858033454, 4.99257406280318301221567393053, 5.10895319406599392552444750615, 5.51245406969399305721300450409, 5.62517647176238080416208205804, 5.89927398324106580499741039614, 5.94145548463962808516832303388, 6.21895743555541327273323448301