L(s) = 1 | − 12·5-s + 12·17-s + 12·19-s + 60·23-s + 66·25-s + 68·31-s − 240·47-s + 8·49-s − 204·53-s − 196·61-s − 180·79-s + 108·83-s − 144·85-s − 144·95-s − 144·107-s − 76·109-s − 48·113-s − 720·115-s + 96·121-s − 156·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 816·155-s + ⋯ |
L(s) = 1 | − 2.39·5-s + 0.705·17-s + 0.631·19-s + 2.60·23-s + 2.63·25-s + 2.19·31-s − 5.10·47-s + 8/49·49-s − 3.84·53-s − 3.21·61-s − 2.27·79-s + 1.30·83-s − 1.69·85-s − 1.51·95-s − 1.34·107-s − 0.697·109-s − 0.424·113-s − 6.26·115-s + 0.793·121-s − 1.24·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s − 5.26·155-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
1.19992×107 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
0.4806187608 |
L(21) |
≈ |
0.4806187608 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | D4 | 1+12T+78T2+12p2T3+p4T4 |
good | 7 | C22≀C2 | 1−8T2−3894T4−8p4T6+p8T8 |
| 11 | C22≀C2 | 1−96T2+29786T4−96p4T6+p8T8 |
| 13 | C22≀C2 | 1−352T2+71898T4−352p4T6+p8T8 |
| 17 | D4 | (1−6T+489T2−6p2T3+p4T4)2 |
| 19 | D4 | (1−6T+713T2−6p2T3+p4T4)2 |
| 23 | D4 | (1−30T+891T2−30p2T3+p4T4)2 |
| 29 | C22≀C2 | 1−1096T2+1242474T4−1096p4T6+p8T8 |
| 31 | D4 | (1−34T+1761T2−34p2T3+p4T4)2 |
| 37 | C22≀C2 | 1−68T2−1268634T4−68p4T6+p8T8 |
| 41 | C22≀C2 | 1−5352T2+12407498T4−5352p4T6+p8T8 |
| 43 | C22≀C2 | 1−5672T2+14203050T4−5672p4T6+p8T8 |
| 47 | D4 | (1+120T+7626T2+120p2T3+p4T4)2 |
| 53 | D4 | (1+102T+8057T2+102p2T3+p4T4)2 |
| 59 | C22≀C2 | 1−10848T2+53616410T4−10848p4T6+p8T8 |
| 61 | D4 | (1+98T+8691T2+98p2T3+p4T4)2 |
| 67 | C22≀C2 | 1+6508T2+32310150T4+6508p4T6+p8T8 |
| 71 | C22≀C2 | 1−4288T2+45932730T4−4288p4T6+p8T8 |
| 73 | C22≀C2 | 1−13280T2+84777594T4−13280p4T6+p8T8 |
| 79 | D4 | (1+90T+6569T2+90p2T3+p4T4)2 |
| 83 | D4 | (1−54T+7779T2−54p2T3+p4T4)2 |
| 89 | C22≀C2 | 1−8136T2+91108874T4−8136p4T6+p8T8 |
| 97 | C22≀C2 | 1−19172T2+267913158T4−19172p4T6+p8T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.26186041706497531726474535181, −6.12310179363891316749945228676, −5.88193141609136567394916415885, −5.69992144826141595842950022742, −5.14285688501537922992111360917, −5.09574616700765144850903279678, −5.00300765022317042222633314926, −4.55166912381640957759594387508, −4.52661808513471474313379342374, −4.45082910982069498577606907041, −4.42926075245793265168381229551, −3.62531406683303089254040972586, −3.45672483929030347647434243328, −3.43782493273158093036393690539, −3.30605098114644118486140066233, −3.02479279264904845119846223968, −2.87421408837980613356708234999, −2.58300709810755856131200400913, −2.17812806087464083816625959186, −1.63963185506767959032358117165, −1.26678775294253196977690566246, −1.21338092230257440535752697091, −1.14824841749661257816504019944, −0.25320905450733790111707806014, −0.20545440607039526451634565472,
0.20545440607039526451634565472, 0.25320905450733790111707806014, 1.14824841749661257816504019944, 1.21338092230257440535752697091, 1.26678775294253196977690566246, 1.63963185506767959032358117165, 2.17812806087464083816625959186, 2.58300709810755856131200400913, 2.87421408837980613356708234999, 3.02479279264904845119846223968, 3.30605098114644118486140066233, 3.43782493273158093036393690539, 3.45672483929030347647434243328, 3.62531406683303089254040972586, 4.42926075245793265168381229551, 4.45082910982069498577606907041, 4.52661808513471474313379342374, 4.55166912381640957759594387508, 5.00300765022317042222633314926, 5.09574616700765144850903279678, 5.14285688501537922992111360917, 5.69992144826141595842950022742, 5.88193141609136567394916415885, 6.12310179363891316749945228676, 6.26186041706497531726474535181