L(s) = 1 | − 8·7-s + 6·11-s + 20·13-s + 76·19-s + 24·23-s + 5·25-s + 60·29-s + 4·31-s + 56·37-s + 90·41-s + 22·43-s + 204·47-s + 54·49-s − 174·59-s + 44·61-s − 14·67-s − 148·73-s − 48·77-s + 160·79-s − 312·83-s − 160·91-s + 2·97-s + 444·101-s + 172·103-s − 400·109-s − 24·113-s − 41·121-s + ⋯ |
L(s) = 1 | − 8/7·7-s + 6/11·11-s + 1.53·13-s + 4·19-s + 1.04·23-s + 1/5·25-s + 2.06·29-s + 4/31·31-s + 1.51·37-s + 2.19·41-s + 0.511·43-s + 4.34·47-s + 1.10·49-s − 2.94·59-s + 0.721·61-s − 0.208·67-s − 2.02·73-s − 0.623·77-s + 2.02·79-s − 3.75·83-s − 1.75·91-s + 2/97·97-s + 4.39·101-s + 1.66·103-s − 3.66·109-s − 0.212·113-s − 0.338·121-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
1.19992×107 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
14.82144712 |
L(21) |
≈ |
14.82144712 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C22 | 1−pT2+p2T4 |
good | 7 | D4×C2 | 1+8T+10T2−352T3−2621T4−352p2T5+10p4T6+8p6T7+p8T8 |
| 11 | D4×C2 | 1−6T+7pT2−390T3−8964T4−390p2T5+7p5T6−6p6T7+p8T8 |
| 13 | D4×C2 | 1−20T+22T2−800T3+46723T4−800p2T5+22p4T6−20p6T7+p8T8 |
| 17 | D4×C2 | 1−790T2+320907T4−790p4T6+p8T8 |
| 19 | D4 | (1−2pT+1023T2−2p3T3+p4T4)2 |
| 23 | D4×C2 | 1−24T+578T2−9264T3−29277T4−9264p2T5+578p4T6−24p6T7+p8T8 |
| 29 | D4×C2 | 1−60T+2462T2−75720T3+1894563T4−75720p2T5+2462p4T6−60p6T7+p8T8 |
| 31 | D4×C2 | 1−4T+1030T2+11744T3+89299T4+11744p2T5+1030p4T6−4p6T7+p8T8 |
| 37 | C2 | (1−14T+p2T2)4 |
| 41 | C22 | (1−45T+2356T2−45p2T3+p4T4)2 |
| 43 | D4×C2 | 1−22T−2375T2+18458T3+3860164T4+18458p2T5−2375p4T6−22p6T7+p8T8 |
| 47 | D4×C2 | 1−204T+21578T2−1572024T3+85146003T4−1572024p2T5+21578p4T6−204p6T7+p8T8 |
| 53 | D4×C2 | 1−9700T2+38880102T4−9700p4T6+p8T8 |
| 59 | D4×C2 | 1+174T+19397T2+1619070T3+109595916T4+1619070p2T5+19397p4T6+174p6T7+p8T8 |
| 61 | D4×C2 | 1−44T−5450T2+2464T3+33503299T4+2464p2T5−5450p4T6−44p6T7+p8T8 |
| 67 | D4×C2 | 1+14T−191T2−120274T3−20881196T4−120274p2T5−191p4T6+14p6T7+p8T8 |
| 71 | D4×C2 | 1−9148T2+46550598T4−9148p4T6+p8T8 |
| 73 | D4 | (1+74T+11487T2+74p2T3+p4T4)2 |
| 79 | D4×C2 | 1−160T+7258T2−937600T3+137709283T4−937600p2T5+7258p4T6−160p6T7+p8T8 |
| 83 | C22 | (1+156T+15001T2+156p2T3+p4T4)2 |
| 89 | D4×C2 | 1−22468T2+231780678T4−22468p4T6+p8T8 |
| 97 | D4×C2 | 1−2T−8675T2+20278T3−13241876T4+20278p2T5−8675p4T6−2p6T7+p8T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.23815531205974755219894868323, −6.19059065796740037700908590705, −5.70671187419513817706726543896, −5.66108020847162495790946867432, −5.64331975652631695699335635138, −5.21458186493688662759400567399, −5.10938578662391252640132466635, −4.77185458418120338753507080011, −4.32392219935286735565107297109, −4.28087313414391594029167260304, −4.26676860046853419802175643567, −3.81902219545204855343213895485, −3.68675188433559511462929770764, −3.22910799283999924091780783616, −3.11702518747926252298455180037, −2.95566761813608632407561024938, −2.83693312245337143217560867850, −2.46351873647662955124014954851, −2.37554572481287018688972237516, −1.70210117489154571244647799554, −1.18156326639398668372176884846, −1.17707553305712283958066325555, −1.05029815419755575348635292947, −0.60777361732385959559167709955, −0.56399570451897981737189089946,
0.56399570451897981737189089946, 0.60777361732385959559167709955, 1.05029815419755575348635292947, 1.17707553305712283958066325555, 1.18156326639398668372176884846, 1.70210117489154571244647799554, 2.37554572481287018688972237516, 2.46351873647662955124014954851, 2.83693312245337143217560867850, 2.95566761813608632407561024938, 3.11702518747926252298455180037, 3.22910799283999924091780783616, 3.68675188433559511462929770764, 3.81902219545204855343213895485, 4.26676860046853419802175643567, 4.28087313414391594029167260304, 4.32392219935286735565107297109, 4.77185458418120338753507080011, 5.10938578662391252640132466635, 5.21458186493688662759400567399, 5.64331975652631695699335635138, 5.66108020847162495790946867432, 5.70671187419513817706726543896, 6.19059065796740037700908590705, 6.23815531205974755219894868323