Properties

Label 8-2160e4-1.1-c2e4-0-12
Degree $8$
Conductor $2.177\times 10^{13}$
Sign $1$
Analytic cond. $1.19992\times 10^{7}$
Root an. cond. $7.67174$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 88·13-s + 10·25-s + 8·37-s + 76·49-s − 124·61-s + 304·73-s − 128·97-s − 812·109-s + 388·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4.16e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 6.76·13-s + 2/5·25-s + 8/37·37-s + 1.55·49-s − 2.03·61-s + 4.16·73-s − 1.31·97-s − 7.44·109-s + 3.20·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 24.6·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{12} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1.19992\times 10^{7}\)
Root analytic conductor: \(7.67174\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{12} \cdot 5^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(16.02233908\)
\(L(\frac12)\) \(\approx\) \(16.02233908\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( ( 1 - p T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 - 38 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 194 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 22 T + p^{2} T^{2} )^{4} \)
17$C_2^2$ \( ( 1 + 533 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 13 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 191 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 62 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 1547 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + 482 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 3458 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 4226 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 5573 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 6374 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 31 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 8438 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 2206 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 76 T + p^{2} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 12107 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 3097 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 12962 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 32 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.48531317644886442151920960884, −6.07542827416156136072810739620, −5.72279026492969566119567566357, −5.59331053482706433376081585094, −5.55999800126947305266471731331, −5.51078574170880522440764660094, −5.13039237013168219602335900508, −4.56132097123238993334321946244, −4.50289393042389497749177703367, −4.15945081184647979171306654079, −4.03423783065252859800427068087, −3.92465945451352093478958912425, −3.65587893003371432876768009402, −3.34257168041660878304482728432, −3.32690525519222437504693488878, −3.11679044047596477084062137919, −2.76823742969333761932864280262, −2.25917618536470218945845711803, −2.16377751141339772657054805243, −1.59680169695039543470418274483, −1.39575439400212836757417761253, −1.25561480993411243329743980707, −1.12879341483121352417393478149, −0.56712017170961588831119869205, −0.54245034668820873482215305507, 0.54245034668820873482215305507, 0.56712017170961588831119869205, 1.12879341483121352417393478149, 1.25561480993411243329743980707, 1.39575439400212836757417761253, 1.59680169695039543470418274483, 2.16377751141339772657054805243, 2.25917618536470218945845711803, 2.76823742969333761932864280262, 3.11679044047596477084062137919, 3.32690525519222437504693488878, 3.34257168041660878304482728432, 3.65587893003371432876768009402, 3.92465945451352093478958912425, 4.03423783065252859800427068087, 4.15945081184647979171306654079, 4.50289393042389497749177703367, 4.56132097123238993334321946244, 5.13039237013168219602335900508, 5.51078574170880522440764660094, 5.55999800126947305266471731331, 5.59331053482706433376081585094, 5.72279026492969566119567566357, 6.07542827416156136072810739620, 6.48531317644886442151920960884

Graph of the $Z$-function along the critical line