L(s) = 1 | + 88·13-s + 10·25-s + 8·37-s + 76·49-s − 124·61-s + 304·73-s − 128·97-s − 812·109-s + 388·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4.16e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | + 6.76·13-s + 2/5·25-s + 8/37·37-s + 1.55·49-s − 2.03·61-s + 4.16·73-s − 1.31·97-s − 7.44·109-s + 3.20·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 24.6·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
1.19992×107 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
16.02233908 |
L(21) |
≈ |
16.02233908 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | (1−pT2)2 |
good | 7 | C22 | (1−38T2+p4T4)2 |
| 11 | C22 | (1−194T2+p4T4)2 |
| 13 | C2 | (1−22T+p2T2)4 |
| 17 | C22 | (1+533T2+p4T4)2 |
| 19 | C22 | (1+13T2+p4T4)2 |
| 23 | C22 | (1−191T2+p4T4)2 |
| 29 | C22 | (1+62T2+p4T4)2 |
| 31 | C22 | (1−1547T2+p4T4)2 |
| 37 | C2 | (1−2T+p2T2)4 |
| 41 | C22 | (1+482T2+p4T4)2 |
| 43 | C22 | (1−3458T2+p4T4)2 |
| 47 | C22 | (1−4226T2+p4T4)2 |
| 53 | C22 | (1+5573T2+p4T4)2 |
| 59 | C22 | (1−6374T2+p4T4)2 |
| 61 | C2 | (1+31T+p2T2)4 |
| 67 | C22 | (1−8438T2+p4T4)2 |
| 71 | C22 | (1+2206T2+p4T4)2 |
| 73 | C2 | (1−76T+p2T2)4 |
| 79 | C22 | (1−12107T2+p4T4)2 |
| 83 | C22 | (1+3097T2+p4T4)2 |
| 89 | C22 | (1+12962T2+p4T4)2 |
| 97 | C2 | (1+32T+p2T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.48531317644886442151920960884, −6.07542827416156136072810739620, −5.72279026492969566119567566357, −5.59331053482706433376081585094, −5.55999800126947305266471731331, −5.51078574170880522440764660094, −5.13039237013168219602335900508, −4.56132097123238993334321946244, −4.50289393042389497749177703367, −4.15945081184647979171306654079, −4.03423783065252859800427068087, −3.92465945451352093478958912425, −3.65587893003371432876768009402, −3.34257168041660878304482728432, −3.32690525519222437504693488878, −3.11679044047596477084062137919, −2.76823742969333761932864280262, −2.25917618536470218945845711803, −2.16377751141339772657054805243, −1.59680169695039543470418274483, −1.39575439400212836757417761253, −1.25561480993411243329743980707, −1.12879341483121352417393478149, −0.56712017170961588831119869205, −0.54245034668820873482215305507,
0.54245034668820873482215305507, 0.56712017170961588831119869205, 1.12879341483121352417393478149, 1.25561480993411243329743980707, 1.39575439400212836757417761253, 1.59680169695039543470418274483, 2.16377751141339772657054805243, 2.25917618536470218945845711803, 2.76823742969333761932864280262, 3.11679044047596477084062137919, 3.32690525519222437504693488878, 3.34257168041660878304482728432, 3.65587893003371432876768009402, 3.92465945451352093478958912425, 4.03423783065252859800427068087, 4.15945081184647979171306654079, 4.50289393042389497749177703367, 4.56132097123238993334321946244, 5.13039237013168219602335900508, 5.51078574170880522440764660094, 5.55999800126947305266471731331, 5.59331053482706433376081585094, 5.72279026492969566119567566357, 6.07542827416156136072810739620, 6.48531317644886442151920960884