L(s) = 1 | + 124·19-s − 40·25-s + 64·31-s + 178·49-s − 4·61-s + 4·79-s + 416·109-s + 304·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 206·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯ |
L(s) = 1 | + 6.52·19-s − 8/5·25-s + 2.06·31-s + 3.63·49-s − 0.0655·61-s + 4/79·79-s + 3.81·109-s + 2.51·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 1.21·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
1.19992×107 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
13.18014170 |
L(21) |
≈ |
13.18014170 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C22 | 1+8pT2+p4T4 |
good | 7 | C22 | (1−89T2+p4T4)2 |
| 11 | C22 | (1−152T2+p4T4)2 |
| 13 | C22 | (1+103T2+p4T4)2 |
| 17 | C22 | (1+418T2+p4T4)2 |
| 19 | C2 | (1−31T+p2T2)4 |
| 23 | C22 | (1+568T2+p4T4)2 |
| 29 | C22 | (1+568T2+p4T4)2 |
| 31 | C2 | (1−16T+p2T2)4 |
| 37 | C22 | (1−2009T2+p4T4)2 |
| 41 | C22 | (1−1112T2+p4T4)2 |
| 43 | C22 | (1−1394T2+p4T4)2 |
| 47 | C22 | (1+4258T2+p4T4)2 |
| 53 | C22 | (1+3928T2+p4T4)2 |
| 59 | C22 | (1−5522T2+p4T4)2 |
| 61 | C2 | (1+T+p2T2)4 |
| 67 | C22 | (1−8537T2+p4T4)2 |
| 71 | C22 | (1−9272T2+p4T4)2 |
| 73 | C22 | (1−9929T2+p4T4)2 |
| 79 | C2 | (1−T+p2T2)4 |
| 83 | C22 | (1+1528T2+p4T4)2 |
| 89 | C22 | (1−2882T2+p4T4)2 |
| 97 | C22 | (1−10169T2+p4T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.21438062759510482786683276719, −5.94708946174985058045013498214, −5.81473184084430859636675450310, −5.61462112950724982786437976544, −5.40048490831536428858916961246, −5.21606256385350892610978870699, −5.16241608849150930528975852097, −4.83036610195798083841593859173, −4.53155380859506497815264655145, −4.42180453147960649836156957675, −4.08253635947917157952260224222, −3.75819838196827559920334672383, −3.58020344766317732482899897263, −3.38837375895475496290333927180, −3.18242905278834579060466774321, −2.94895449791701500892313100055, −2.72853579326341594798068331471, −2.52404370638662269982798470188, −2.12437926927513239643605328073, −1.78980819500163831422210000937, −1.48630706301953191401225376768, −1.07858715357387718607577657506, −0.822736455912634815373562912243, −0.817008663883462826980026789393, −0.45428692620403345115813374308,
0.45428692620403345115813374308, 0.817008663883462826980026789393, 0.822736455912634815373562912243, 1.07858715357387718607577657506, 1.48630706301953191401225376768, 1.78980819500163831422210000937, 2.12437926927513239643605328073, 2.52404370638662269982798470188, 2.72853579326341594798068331471, 2.94895449791701500892313100055, 3.18242905278834579060466774321, 3.38837375895475496290333927180, 3.58020344766317732482899897263, 3.75819838196827559920334672383, 4.08253635947917157952260224222, 4.42180453147960649836156957675, 4.53155380859506497815264655145, 4.83036610195798083841593859173, 5.16241608849150930528975852097, 5.21606256385350892610978870699, 5.40048490831536428858916961246, 5.61462112950724982786437976544, 5.81473184084430859636675450310, 5.94708946174985058045013498214, 6.21438062759510482786683276719