L(s) = 1 | − 20·7-s − 28·13-s + 4·19-s − 10·25-s + 28·31-s − 64·37-s − 116·43-s + 144·49-s − 4·61-s − 56·67-s − 28·73-s + 268·79-s + 560·91-s + 8·97-s + 400·103-s + 140·109-s + 376·121-s + 127-s + 131-s − 80·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 2.85·7-s − 2.15·13-s + 4/19·19-s − 2/5·25-s + 0.903·31-s − 1.72·37-s − 2.69·43-s + 2.93·49-s − 0.0655·61-s − 0.835·67-s − 0.383·73-s + 3.39·79-s + 6.15·91-s + 8/97·97-s + 3.88·103-s + 1.28·109-s + 3.10·121-s + 0.00787·127-s + 0.00763·131-s − 0.601·133-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
1.19992×107 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
0.2648810944 |
L(21) |
≈ |
0.2648810944 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | (1+pT2)2 |
good | 7 | D4 | (1+10T+78T2+10p2T3+p4T4)2 |
| 11 | D4×C2 | 1−376T2+63006T4−376p4T6+p8T8 |
| 13 | D4 | (1+14T+342T2+14p2T3+p4T4)2 |
| 17 | C22 | (1−353T2+p4T4)2 |
| 19 | D4 | (1−2T+543T2−2p2T3+p4T4)2 |
| 23 | D4×C2 | 1−38pT2+433131T4−38p5T6+p8T8 |
| 29 | D4×C2 | 1−3256T2+4063326T4−3256p4T6+p8T8 |
| 31 | D4 | (1−14T+1791T2−14p2T3+p4T4)2 |
| 37 | D4 | (1+32T+1374T2+32p2T3+p4T4)2 |
| 41 | D4×C2 | 1−4312T2+9935358T4−4312p4T6+p8T8 |
| 43 | D4 | (1+58T+2334T2+58p2T3+p4T4)2 |
| 47 | D4×C2 | 1−8188T2+26416518T4−8188p4T6+p8T8 |
| 53 | D4×C2 | 1−2218T2+16848843T4−2218p4T6+p8T8 |
| 59 | D4×C2 | 1−7912T2+35671038T4−7912p4T6+p8T8 |
| 61 | D4 | (1+2T+963T2+2p2T3+p4T4)2 |
| 67 | C2 | (1+14T+p2T2)4 |
| 71 | D4×C2 | 1−11704T2+67208766T4−11704p4T6+p8T8 |
| 73 | D4 | (1+14T+10302T2+14p2T3+p4T4)2 |
| 79 | D4 | (1−134T+10491T2−134p2T3+p4T4)2 |
| 83 | D4×C2 | 1−2338T2+46102083T4−2338p4T6+p8T8 |
| 89 | D4×C2 | 1−5512T2+128866398T4−5512p4T6+p8T8 |
| 97 | D4 | (1−4T+18642T2−4p2T3+p4T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.15520337940245998411410790506, −6.11975227575004077631893119551, −5.95303973762374004943388819176, −5.93844323699500108986644232054, −5.30132916203829281385766317978, −5.06225181883497336214245021633, −4.96173449225333657528992891265, −4.80772815357307259725800855289, −4.74801411947112610582821577092, −4.47551953854594537920016044272, −3.92028767413694705581123786683, −3.64370874083565214362974430099, −3.48761474003375215977065483819, −3.45209848100669186490158424148, −3.36019647639628026039147381361, −2.95447763617178436020835607191, −2.55541853993553361180115240354, −2.51438944098647962286301159526, −2.25443585167870867333135640754, −1.96931647892790466040500233570, −1.49956988696577790762575541113, −1.33078258958841618537562736342, −0.57920948154722457338545198220, −0.48805469851330721458364115266, −0.11225567927891783844417251355,
0.11225567927891783844417251355, 0.48805469851330721458364115266, 0.57920948154722457338545198220, 1.33078258958841618537562736342, 1.49956988696577790762575541113, 1.96931647892790466040500233570, 2.25443585167870867333135640754, 2.51438944098647962286301159526, 2.55541853993553361180115240354, 2.95447763617178436020835607191, 3.36019647639628026039147381361, 3.45209848100669186490158424148, 3.48761474003375215977065483819, 3.64370874083565214362974430099, 3.92028767413694705581123786683, 4.47551953854594537920016044272, 4.74801411947112610582821577092, 4.80772815357307259725800855289, 4.96173449225333657528992891265, 5.06225181883497336214245021633, 5.30132916203829281385766317978, 5.93844323699500108986644232054, 5.95303973762374004943388819176, 6.11975227575004077631893119551, 6.15520337940245998411410790506