L(s) = 1 | − 2·5-s − 4·11-s + 8·19-s + 5·25-s + 14·29-s − 12·31-s + 10·41-s − 13·49-s + 8·55-s − 24·59-s + 14·61-s − 40·71-s − 8·79-s − 60·89-s − 16·95-s + 36·101-s + 36·109-s + 26·121-s − 22·125-s + 127-s + 131-s + 137-s + 139-s − 28·145-s + 149-s + 151-s + 24·155-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 1.20·11-s + 1.83·19-s + 25-s + 2.59·29-s − 2.15·31-s + 1.56·41-s − 1.85·49-s + 1.07·55-s − 3.12·59-s + 1.79·61-s − 4.74·71-s − 0.900·79-s − 6.35·89-s − 1.64·95-s + 3.58·101-s + 3.44·109-s + 2.36·121-s − 1.96·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.32·145-s + 0.0819·149-s + 0.0813·151-s + 1.92·155-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
88495.9 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.7835819283 |
L(21) |
≈ |
0.7835819283 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C22 | 1+2T−T2+2pT3+p2T4 |
good | 7 | C22×C22 | (1+2T2+p2T4)(1+11T2+p2T4) |
| 11 | C22 | (1+2T−7T2+2pT3+p2T4)2 |
| 13 | C22×C22 | (1−T2+p2T4)(1+23T2+p2T4) |
| 17 | C22 | (1+2T2+p2T4)2 |
| 19 | C2 | (1−2T+pT2)4 |
| 23 | C23 | 1+45T2+1496T4+45p2T6+p4T8 |
| 29 | C22 | (1−7T+20T2−7pT3+p2T4)2 |
| 31 | C22 | (1+6T+5T2+6pT3+p2T4)2 |
| 37 | C2 | (1−12T+pT2)2(1+12T+pT2)2 |
| 41 | C22 | (1−5T−16T2−5pT3+p2T4)2 |
| 43 | C23 | 1−58T2+1515T4−58p2T6+p4T8 |
| 47 | C23 | 1+13T2−2040T4+13p2T6+p4T8 |
| 53 | C22 | (1−42T2+p2T4)2 |
| 59 | C22 | (1+12T+85T2+12pT3+p2T4)2 |
| 61 | C22 | (1−7T−12T2−7pT3+p2T4)2 |
| 67 | C22×C22 | (1−13T2+p2T4)(1+122T2+p2T4) |
| 71 | C2 | (1+10T+pT2)4 |
| 73 | C22 | (1−130T2+p2T4)2 |
| 79 | C2 | (1−13T+pT2)2(1+17T+pT2)2 |
| 83 | C23 | 1+141T2+12992T4+141p2T6+p4T8 |
| 89 | C2 | (1+15T+pT2)4 |
| 97 | C23 | 1−62T2−5565T4−62p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.51705240166213152007570652566, −6.34084420252208200709776897714, −5.88839803251556337528240864825, −5.69255090719242987571132975412, −5.61486154709628952937810949744, −5.55741756099638326030186871949, −5.21595294550443145040599821086, −4.87665054025083822360361555737, −4.59672595427736479484994834085, −4.59132994242869465085694220618, −4.32970464568374621884797804744, −4.31471640458441348609211874951, −3.85805029406410296845859215083, −3.38112363135966990741075046991, −3.33287295139578123854568996966, −3.10192491135609643412026370188, −2.93147751856421482378889068410, −2.80542572569371836071911928753, −2.48806038583656296070306932190, −2.00374971495860340207095191435, −1.73697515878946547055340031066, −1.31427732674723225173679902676, −1.21524416204542708796084851731, −0.66752585687098120215768822554, −0.18660954820541349242208180974,
0.18660954820541349242208180974, 0.66752585687098120215768822554, 1.21524416204542708796084851731, 1.31427732674723225173679902676, 1.73697515878946547055340031066, 2.00374971495860340207095191435, 2.48806038583656296070306932190, 2.80542572569371836071911928753, 2.93147751856421482378889068410, 3.10192491135609643412026370188, 3.33287295139578123854568996966, 3.38112363135966990741075046991, 3.85805029406410296845859215083, 4.31471640458441348609211874951, 4.32970464568374621884797804744, 4.59132994242869465085694220618, 4.59672595427736479484994834085, 4.87665054025083822360361555737, 5.21595294550443145040599821086, 5.55741756099638326030186871949, 5.61486154709628952937810949744, 5.69255090719242987571132975412, 5.88839803251556337528240864825, 6.34084420252208200709776897714, 6.51705240166213152007570652566