Properties

Label 8-2160e4-1.1-c1e4-0-4
Degree 88
Conductor 2.177×10132.177\times 10^{13}
Sign 11
Analytic cond. 88495.988495.9
Root an. cond. 4.153034.15303
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·13-s − 2·25-s − 28·37-s + 22·49-s − 4·61-s + 4·73-s + 4·97-s + 40·109-s − 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 42·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 1.10·13-s − 2/5·25-s − 4.60·37-s + 22/7·49-s − 0.512·61-s + 0.468·73-s + 0.406·97-s + 3.83·109-s − 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 3.23·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

Λ(s)=((21631254)s/2ΓC(s)4L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((21631254)s/2ΓC(s+1/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 216312542^{16} \cdot 3^{12} \cdot 5^{4}
Sign: 11
Analytic conductor: 88495.988495.9
Root analytic conductor: 4.153034.15303
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 21631254, ( :1/2,1/2,1/2,1/2), 1)(8,\ 2^{16} \cdot 3^{12} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )

Particular Values

L(1)L(1) \approx 0.57064420430.5706442043
L(12)L(\frac12) \approx 0.57064420430.5706442043
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3 1 1
5C2C_2 (1+T2)2 ( 1 + T^{2} )^{2}
good7C2C_2 (15T+pT2)2(1+5T+pT2)2 ( 1 - 5 T + p T^{2} )^{2}( 1 + 5 T + p T^{2} )^{2}
11C22C_2^2 (1+10T2+p2T4)2 ( 1 + 10 T^{2} + p^{2} T^{4} )^{2}
13C2C_2 (1T+pT2)4 ( 1 - T + p T^{2} )^{4}
17C2C_2 (1pT2)4 ( 1 - p T^{2} )^{4}
19C22C_2^2 (135T2+p2T4)2 ( 1 - 35 T^{2} + p^{2} T^{4} )^{2}
23C22C_2^2 (1+34T2+p2T4)2 ( 1 + 34 T^{2} + p^{2} T^{4} )^{2}
29C22C_2^2 (122T2+p2T4)2 ( 1 - 22 T^{2} + p^{2} T^{4} )^{2}
31C22C_2^2 (150T2+p2T4)2 ( 1 - 50 T^{2} + p^{2} T^{4} )^{2}
37C2C_2 (1+7T+pT2)4 ( 1 + 7 T + p T^{2} )^{4}
41C22C_2^2 (146T2+p2T4)2 ( 1 - 46 T^{2} + p^{2} T^{4} )^{2}
43C22C_2^2 (174T2+p2T4)2 ( 1 - 74 T^{2} + p^{2} T^{4} )^{2}
47C22C_2^2 (1+46T2+p2T4)2 ( 1 + 46 T^{2} + p^{2} T^{4} )^{2}
53C22C_2^2 (170T2+p2T4)2 ( 1 - 70 T^{2} + p^{2} T^{4} )^{2}
59C22C_2^2 (174T2+p2T4)2 ( 1 - 74 T^{2} + p^{2} T^{4} )^{2}
61C2C_2 (1+T+pT2)4 ( 1 + T + p T^{2} )^{4}
67C22C_2^2 (1107T2+p2T4)2 ( 1 - 107 T^{2} + p^{2} T^{4} )^{2}
71C22C_2^2 (1+130T2+p2T4)2 ( 1 + 130 T^{2} + p^{2} T^{4} )^{2}
73C2C_2 (1T+pT2)4 ( 1 - T + p T^{2} )^{4}
79C22C_2^2 (183T2+p2T4)2 ( 1 - 83 T^{2} + p^{2} T^{4} )^{2}
83C22C_2^2 (1+58T2+p2T4)2 ( 1 + 58 T^{2} + p^{2} T^{4} )^{2}
89C2C_2 (1pT2)4 ( 1 - p T^{2} )^{4}
97C2C_2 (1T+pT2)4 ( 1 - T + p T^{2} )^{4}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−6.33099047397905100550774477181, −6.23624482994640978458263359942, −5.99532774583619869436576379465, −5.94745949388314923772472107160, −5.52906071721795402969418661162, −5.47426832600293440783023661910, −5.10411608875379806072954311305, −5.07804056398547159204739192426, −4.81598241870371231887458899593, −4.58399955471075539385164287439, −4.24107494207845485717800315905, −3.94408378957739154941273383026, −3.85203247271678446037838200895, −3.54559552449163762711873395931, −3.49633787112694568590308516523, −3.27462571662969934193773560785, −2.77045584621031606995033385689, −2.73080153803482116321796042247, −2.14178722861798386979094389402, −2.13694360238549647192676374937, −1.75796999180877063508061669009, −1.54165185789996133310112757407, −0.963429626694168764341601162701, −0.937952479543584697810901185521, −0.12976108285368816478317225020, 0.12976108285368816478317225020, 0.937952479543584697810901185521, 0.963429626694168764341601162701, 1.54165185789996133310112757407, 1.75796999180877063508061669009, 2.13694360238549647192676374937, 2.14178722861798386979094389402, 2.73080153803482116321796042247, 2.77045584621031606995033385689, 3.27462571662969934193773560785, 3.49633787112694568590308516523, 3.54559552449163762711873395931, 3.85203247271678446037838200895, 3.94408378957739154941273383026, 4.24107494207845485717800315905, 4.58399955471075539385164287439, 4.81598241870371231887458899593, 5.07804056398547159204739192426, 5.10411608875379806072954311305, 5.47426832600293440783023661910, 5.52906071721795402969418661162, 5.94745949388314923772472107160, 5.99532774583619869436576379465, 6.23624482994640978458263359942, 6.33099047397905100550774477181

Graph of the ZZ-function along the critical line