L(s) = 1 | − 4·5-s − 8·11-s − 4·19-s + 8·25-s − 8·29-s − 24·31-s + 8·41-s + 26·49-s + 32·55-s − 4·61-s − 56·71-s + 4·79-s − 48·89-s + 16·95-s + 48·101-s + 8·121-s − 20·125-s + 127-s + 131-s + 137-s + 139-s + 32·145-s + 149-s + 151-s + 96·155-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 2.41·11-s − 0.917·19-s + 8/5·25-s − 1.48·29-s − 4.31·31-s + 1.24·41-s + 26/7·49-s + 4.31·55-s − 0.512·61-s − 6.64·71-s + 0.450·79-s − 5.08·89-s + 1.64·95-s + 4.77·101-s + 8/11·121-s − 1.78·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.65·145-s + 0.0819·149-s + 0.0813·151-s + 7.71·155-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
88495.9 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.08887384341 |
L(21) |
≈ |
0.08887384341 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C22 | 1+4T+8T2+4pT3+p2T4 |
good | 7 | C22 | (1−13T2+p2T4)2 |
| 11 | D4 | (1+4T+20T2+4pT3+p2T4)2 |
| 13 | D4×C2 | 1−2T2+243T4−2p2T6+p4T8 |
| 17 | C22 | (1−10T2+p2T4)2 |
| 19 | D4 | (1+2T+15T2+2pT3+p2T4)2 |
| 23 | D4×C2 | 1−72T2+2258T4−72p2T6+p4T8 |
| 29 | D4 | (1+4T+56T2+4pT3+p2T4)2 |
| 31 | C2 | (1+6T+pT2)4 |
| 37 | D4×C2 | 1−50T2+963T4−50p2T6+p4T8 |
| 41 | D4 | (1−4T+32T2−4pT3+p2T4)2 |
| 43 | C22 | (1−50T2+p2T4)2 |
| 47 | C22 | (1−70T2+p2T4)2 |
| 53 | D4×C2 | 1−192T2+14738T4−192p2T6+p4T8 |
| 59 | C22 | (1+94T2+p2T4)2 |
| 61 | D4 | (1+2T+27T2+2pT3+p2T4)2 |
| 67 | D4×C2 | 1−26T2−453T4−26p2T6+p4T8 |
| 71 | D4 | (1+28T+332T2+28pT3+p2T4)2 |
| 73 | D4×C2 | 1−242T2+25203T4−242p2T6+p4T8 |
| 79 | D4 | (1−2T+135T2−2pT3+p2T4)2 |
| 83 | D4×C2 | 1−120T2+14978T4−120p2T6+p4T8 |
| 89 | C2 | (1+12T+pT2)4 |
| 97 | D4×C2 | 1−98T2+99pT4−98p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.51048289575479300203341975049, −6.08182364881705438703742063630, −5.78284545154088010144170138681, −5.77040376592785395845103441987, −5.68536610414456997568408830304, −5.48780814344310278778801954649, −5.30897969404684815147865802485, −4.82770065343566124148986431682, −4.71506721794908934577307621314, −4.60076820918027552100909942670, −4.16654553442556505578832680225, −4.07626008454443158242795066397, −3.79399222196726136481918294377, −3.68235378418255673202224734276, −3.60683958366166633862491823643, −3.01177601514116103488112399987, −2.77856740344431491155131005251, −2.71907564912782531246286709430, −2.52729114742290216745072800328, −2.02776601964887935356995357203, −1.79727515288026889875044371097, −1.52776358284870879331170726102, −1.07884395120755782456859970618, −0.33262334093927454019332824298, −0.11894175671256023946648420570,
0.11894175671256023946648420570, 0.33262334093927454019332824298, 1.07884395120755782456859970618, 1.52776358284870879331170726102, 1.79727515288026889875044371097, 2.02776601964887935356995357203, 2.52729114742290216745072800328, 2.71907564912782531246286709430, 2.77856740344431491155131005251, 3.01177601514116103488112399987, 3.60683958366166633862491823643, 3.68235378418255673202224734276, 3.79399222196726136481918294377, 4.07626008454443158242795066397, 4.16654553442556505578832680225, 4.60076820918027552100909942670, 4.71506721794908934577307621314, 4.82770065343566124148986431682, 5.30897969404684815147865802485, 5.48780814344310278778801954649, 5.68536610414456997568408830304, 5.77040376592785395845103441987, 5.78284545154088010144170138681, 6.08182364881705438703742063630, 6.51048289575479300203341975049