L(s) = 1 | − 2·5-s + 2·7-s + 8·17-s + 8·19-s + 10·23-s + 25-s + 6·29-s + 12·31-s − 4·35-s − 24·37-s − 10·41-s + 4·43-s + 14·47-s + 9·49-s + 8·53-s + 12·59-s + 6·61-s − 2·67-s + 16·73-s − 4·79-s + 6·83-s − 16·85-s + 28·89-s − 16·95-s − 4·97-s − 4·101-s + 20·103-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 0.755·7-s + 1.94·17-s + 1.83·19-s + 2.08·23-s + 1/5·25-s + 1.11·29-s + 2.15·31-s − 0.676·35-s − 3.94·37-s − 1.56·41-s + 0.609·43-s + 2.04·47-s + 9/7·49-s + 1.09·53-s + 1.56·59-s + 0.768·61-s − 0.244·67-s + 1.87·73-s − 0.450·79-s + 0.658·83-s − 1.73·85-s + 2.96·89-s − 1.64·95-s − 0.406·97-s − 0.398·101-s + 1.97·103-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
88495.9 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
7.451510079 |
L(21) |
≈ |
7.451510079 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | (1+T+T2)2 |
good | 7 | D4×C2 | 1−2T−5T2+10T3+4T4+10pT5−5p2T6−2p3T7+p4T8 |
| 11 | C22 | (1−pT2+p2T4)2 |
| 13 | C22 | (1−pT2+p2T4)2 |
| 17 | C2 | (1−2T+pT2)4 |
| 19 | D4 | (1−4T+18T2−4pT3+p2T4)2 |
| 23 | D4×C2 | 1−10T+35T2−190T3+1396T4−190pT5+35p2T6−10p3T7+p4T8 |
| 29 | D4×C2 | 1−6T−7T2+90T3−36T4+90pT5−7p2T6−6p3T7+p4T8 |
| 31 | D4×C2 | 1−12T+70T2−144T3+51T4−144pT5+70p2T6−12p3T7+p4T8 |
| 37 | C2 | (1+6T+pT2)4 |
| 41 | D4×C2 | 1+10T+17T2+10T3+1108T4+10pT5+17p2T6+10p3T7+p4T8 |
| 43 | D4×C2 | 1−4T+22T2+368T3−2501T4+368pT5+22p2T6−4p3T7+p4T8 |
| 47 | D4×C2 | 1−14T+59T2−602T3+7348T4−602pT5+59p2T6−14p3T7+p4T8 |
| 53 | D4 | (1−4T+14T2−4pT3+p2T4)2 |
| 59 | D4×C2 | 1−12T+14T2−144T3+4923T4−144pT5+14p2T6−12p3T7+p4T8 |
| 61 | C22 | (1−3T−52T2−3pT3+p2T4)2 |
| 67 | D4×C2 | 1+2T+19T2−298T3−4532T4−298pT5+19p2T6+2p3T7+p4T8 |
| 71 | C22 | (1+46T2+p2T4)2 |
| 73 | D4 | (1−8T+66T2−8pT3+p2T4)2 |
| 79 | D4×C2 | 1+4T−122T2−80T3+11539T4−80pT5−122p2T6+4p3T7+p4T8 |
| 83 | D4×C2 | 1−6T−133T2−18T3+18684T4−18pT5−133p2T6−6p3T7+p4T8 |
| 89 | D4 | (1−14T+131T2−14pT3+p2T4)2 |
| 97 | C22 | (1+2T−93T2+2pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.75995113304210617087790432692, −6.01018507917860200364504927600, −6.00871199429714224143126170022, −5.91736405618493464233945516111, −5.38295945371299781371473888417, −5.24118409537129901167083672276, −5.18278829129028159646251404451, −5.15058730198881321357027395488, −4.91083687527932679981700741628, −4.50241615920619079438972761730, −4.35414153523709184134041458416, −4.00146965476361049211770660167, −3.89550821779315251172974022675, −3.35803792884046277530537631238, −3.35257568424756317001976607024, −3.20358041404664131716185968232, −3.20147267838816799584546743316, −2.54460583341413070962077348698, −2.38361779170187557576398274131, −2.12651015412862400858851335802, −1.72929136274523278830976506216, −1.22612582279908290900198994644, −1.04409572270346864466305798018, −0.77632012352639139228655465572, −0.61220779306442116758033154828,
0.61220779306442116758033154828, 0.77632012352639139228655465572, 1.04409572270346864466305798018, 1.22612582279908290900198994644, 1.72929136274523278830976506216, 2.12651015412862400858851335802, 2.38361779170187557576398274131, 2.54460583341413070962077348698, 3.20147267838816799584546743316, 3.20358041404664131716185968232, 3.35257568424756317001976607024, 3.35803792884046277530537631238, 3.89550821779315251172974022675, 4.00146965476361049211770660167, 4.35414153523709184134041458416, 4.50241615920619079438972761730, 4.91083687527932679981700741628, 5.15058730198881321357027395488, 5.18278829129028159646251404451, 5.24118409537129901167083672276, 5.38295945371299781371473888417, 5.91736405618493464233945516111, 6.00871199429714224143126170022, 6.01018507917860200364504927600, 6.75995113304210617087790432692