L(s) = 1 | + 24·19-s + 9·25-s − 28·31-s − 10·49-s − 16·61-s − 40·109-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯ |
L(s) = 1 | + 5.50·19-s + 9/5·25-s − 5.02·31-s − 1.42·49-s − 2.04·61-s − 3.83·109-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
88495.9 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.978204559 |
L(21) |
≈ |
4.978204559 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C22 | 1−9T2+p2T4 |
good | 7 | C2 | (1−3T+pT2)2(1+3T+pT2)2 |
| 11 | C22 | (1+3T2+p2T4)2 |
| 13 | C2 | (1−pT2)4 |
| 17 | C22 | (1−18T2+p2T4)2 |
| 19 | C2 | (1−6T+pT2)4 |
| 23 | C22 | (1−42T2+p2T4)2 |
| 29 | C2 | (1+pT2)4 |
| 31 | C2 | (1+7T+pT2)4 |
| 37 | C22 | (1+2T2+p2T4)2 |
| 41 | C22 | (1+6T2+p2T4)2 |
| 43 | C22 | (1−10T2+p2T4)2 |
| 47 | C22 | (1−90T2+p2T4)2 |
| 53 | C22 | (1−97T2+p2T4)2 |
| 59 | C22 | (1+42T2+p2T4)2 |
| 61 | C2 | (1+4T+pT2)4 |
| 67 | C22 | (1−58T2+p2T4)2 |
| 71 | C2 | (1+pT2)4 |
| 73 | C22 | (1−127T2+p2T4)2 |
| 79 | C2 | (1+pT2)4 |
| 83 | C22 | (1−141T2+p2T4)2 |
| 89 | C22 | (1+102T2+p2T4)2 |
| 97 | C22 | (1−175T2+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.70400955932220577077470496976, −6.14760465331538496449936466691, −5.88486428964193287050253707565, −5.70442166840490137390538396995, −5.45132019166679165909671016355, −5.40009491695299035049301584719, −5.33965992042105433312300028155, −5.14456478140879043960075343130, −4.82326152430334220606221475055, −4.49990142408601185397172809092, −4.46896452847844228530078010632, −3.91419685220581800678477012977, −3.81824299601216125343276134828, −3.40413890904809460604931686374, −3.37656389073463306410437775450, −3.20200839323780844130701654935, −2.99464306180405638829342923747, −2.72344532496388764028809155494, −2.48755056635725276733944794371, −1.83559711184905792660262808855, −1.56666601207922982139473079595, −1.54061628817866170653356116432, −1.29185300653474010907580010010, −0.55894289828552607051445944650, −0.54005133197055822449885771424,
0.54005133197055822449885771424, 0.55894289828552607051445944650, 1.29185300653474010907580010010, 1.54061628817866170653356116432, 1.56666601207922982139473079595, 1.83559711184905792660262808855, 2.48755056635725276733944794371, 2.72344532496388764028809155494, 2.99464306180405638829342923747, 3.20200839323780844130701654935, 3.37656389073463306410437775450, 3.40413890904809460604931686374, 3.81824299601216125343276134828, 3.91419685220581800678477012977, 4.46896452847844228530078010632, 4.49990142408601185397172809092, 4.82326152430334220606221475055, 5.14456478140879043960075343130, 5.33965992042105433312300028155, 5.40009491695299035049301584719, 5.45132019166679165909671016355, 5.70442166840490137390538396995, 5.88486428964193287050253707565, 6.14760465331538496449936466691, 6.70400955932220577077470496976