L(s) = 1 | + 4·5-s + 8·11-s − 4·19-s + 8·25-s + 8·29-s − 24·31-s − 8·41-s + 26·49-s + 32·55-s − 4·61-s + 56·71-s + 4·79-s + 48·89-s − 16·95-s − 48·101-s + 8·121-s + 20·125-s + 127-s + 131-s + 137-s + 139-s + 32·145-s + 149-s + 151-s − 96·155-s + 157-s + 163-s + ⋯ |
L(s) = 1 | + 1.78·5-s + 2.41·11-s − 0.917·19-s + 8/5·25-s + 1.48·29-s − 4.31·31-s − 1.24·41-s + 26/7·49-s + 4.31·55-s − 0.512·61-s + 6.64·71-s + 0.450·79-s + 5.08·89-s − 1.64·95-s − 4.77·101-s + 8/11·121-s + 1.78·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.65·145-s + 0.0819·149-s + 0.0813·151-s − 7.71·155-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
88495.9 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
9.252853700 |
L(21) |
≈ |
9.252853700 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C22 | 1−4T+8T2−4pT3+p2T4 |
good | 7 | C22 | (1−13T2+p2T4)2 |
| 11 | D4 | (1−4T+20T2−4pT3+p2T4)2 |
| 13 | D4×C2 | 1−2T2+243T4−2p2T6+p4T8 |
| 17 | C22 | (1−10T2+p2T4)2 |
| 19 | D4 | (1+2T+15T2+2pT3+p2T4)2 |
| 23 | D4×C2 | 1−72T2+2258T4−72p2T6+p4T8 |
| 29 | D4 | (1−4T+56T2−4pT3+p2T4)2 |
| 31 | C2 | (1+6T+pT2)4 |
| 37 | D4×C2 | 1−50T2+963T4−50p2T6+p4T8 |
| 41 | D4 | (1+4T+32T2+4pT3+p2T4)2 |
| 43 | C22 | (1−50T2+p2T4)2 |
| 47 | C22 | (1−70T2+p2T4)2 |
| 53 | D4×C2 | 1−192T2+14738T4−192p2T6+p4T8 |
| 59 | C22 | (1+94T2+p2T4)2 |
| 61 | D4 | (1+2T+27T2+2pT3+p2T4)2 |
| 67 | D4×C2 | 1−26T2−453T4−26p2T6+p4T8 |
| 71 | D4 | (1−28T+332T2−28pT3+p2T4)2 |
| 73 | D4×C2 | 1−242T2+25203T4−242p2T6+p4T8 |
| 79 | D4 | (1−2T+135T2−2pT3+p2T4)2 |
| 83 | D4×C2 | 1−120T2+14978T4−120p2T6+p4T8 |
| 89 | C2 | (1−12T+pT2)4 |
| 97 | D4×C2 | 1−98T2+99pT4−98p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.63259356842618982602840815918, −6.19534137400881811775742925325, −6.05101935652253456404780789426, −5.88314432004906551456042125271, −5.57777414224293424254910665570, −5.40727598594747337360169853104, −5.26224297298396485058583604444, −5.07217323040412694251422009480, −4.91999556554107270355234591418, −4.49416212021678944730947641950, −4.18477254288311545857751797665, −3.97069088180782796571984107003, −3.93079644221829061736592331094, −3.59485102168089228962210265794, −3.52366781218182011922127880915, −3.18868937760313204037451650021, −2.82974143944792544314406388120, −2.39506595567585262386408950894, −2.20481051233391801090190591233, −2.00266310491874004032795401177, −1.86694560594946253072310613971, −1.61893625802541340779890286101, −1.12032246271454199030033261104, −0.814097246557516346549951117762, −0.52696369560528001664331915995,
0.52696369560528001664331915995, 0.814097246557516346549951117762, 1.12032246271454199030033261104, 1.61893625802541340779890286101, 1.86694560594946253072310613971, 2.00266310491874004032795401177, 2.20481051233391801090190591233, 2.39506595567585262386408950894, 2.82974143944792544314406388120, 3.18868937760313204037451650021, 3.52366781218182011922127880915, 3.59485102168089228962210265794, 3.93079644221829061736592331094, 3.97069088180782796571984107003, 4.18477254288311545857751797665, 4.49416212021678944730947641950, 4.91999556554107270355234591418, 5.07217323040412694251422009480, 5.26224297298396485058583604444, 5.40727598594747337360169853104, 5.57777414224293424254910665570, 5.88314432004906551456042125271, 6.05101935652253456404780789426, 6.19534137400881811775742925325, 6.63259356842618982602840815918