L(s) = 1 | − 12·11-s + 4·13-s + 24·23-s − 2·25-s + 8·37-s − 24·47-s + 4·49-s − 12·59-s − 4·61-s − 12·71-s + 4·73-s − 32·97-s + 48·107-s + 4·109-s + 52·121-s + 127-s + 131-s + 137-s + 139-s − 48·143-s + 149-s + 151-s + 157-s + 163-s + 167-s + 12·169-s + 173-s + ⋯ |
L(s) = 1 | − 3.61·11-s + 1.10·13-s + 5.00·23-s − 2/5·25-s + 1.31·37-s − 3.50·47-s + 4/7·49-s − 1.56·59-s − 0.512·61-s − 1.42·71-s + 0.468·73-s − 3.24·97-s + 4.64·107-s + 0.383·109-s + 4.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 4.01·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.923·169-s + 0.0760·173-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
88495.9 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.843514621 |
L(21) |
≈ |
2.843514621 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | (1+T2)2 |
good | 7 | D4×C2 | 1−4T2−6T4−4p2T6+p4T8 |
| 11 | D4 | (1+6T+28T2+6pT3+p2T4)2 |
| 13 | D4 | (1−2T−2pT3+p2T4)2 |
| 17 | C22 | (1−7T2+p2T4)2 |
| 19 | D4×C2 | 1−34T2+579T4−34p2T6+p4T8 |
| 23 | D4 | (1−12T+79T2−12pT3+p2T4)2 |
| 29 | D4×C2 | 1−44T2+1194T4−44p2T6+p4T8 |
| 31 | D4×C2 | 1−82T2+3171T4−82p2T6+p4T8 |
| 37 | C2 | (1−2T+pT2)4 |
| 41 | D4×C2 | 1−92T2+4506T4−92p2T6+p4T8 |
| 43 | D4×C2 | 1−4T2+1002T4−4p2T6+p4T8 |
| 47 | D4 | (1+12T+118T2+12pT3+p2T4)2 |
| 53 | D4×C2 | 1−86T2+3579T4−86p2T6+p4T8 |
| 59 | D4 | (1+6T+52T2+6pT3+p2T4)2 |
| 61 | C2 | (1+T+pT2)4 |
| 67 | C22 | (1−26T2+p2T4)2 |
| 71 | D4 | (1+6T+148T2+6pT3+p2T4)2 |
| 73 | D4 | (1−2T+120T2−2pT3+p2T4)2 |
| 79 | D4×C2 | 1−202T2+20955T4−202p2T6+p4T8 |
| 83 | C22 | (1+139T2+p2T4)2 |
| 89 | D4×C2 | 1−140T2+11994T4−140p2T6+p4T8 |
| 97 | C2 | (1+8T+pT2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.54801771529231945686448002656, −6.21719957552703635874923542516, −5.88089786954278546467640145991, −5.87922755984119348496344402269, −5.53847089177282888754189162777, −5.37626723346144320415770465442, −5.13870464228729663608012801838, −4.97232893074457751734717892370, −4.72271820736228343799453897253, −4.69909309616188821483787809321, −4.58802398679959866710061836122, −4.07932918198831638818367437533, −3.84678764616181897334961248691, −3.28590817834723512813050154802, −3.24554581397598036876368584785, −3.18986345766012403224163924120, −2.83995562186468823654378980564, −2.67201338497142055084619081595, −2.62688782480522439807356017849, −2.03031818208954932468058188193, −1.80484765349897089130126594125, −1.31398808466998804631050492899, −1.23032000481983733540545183292, −0.52576368104977398623015708558, −0.43631070961811189632071913433,
0.43631070961811189632071913433, 0.52576368104977398623015708558, 1.23032000481983733540545183292, 1.31398808466998804631050492899, 1.80484765349897089130126594125, 2.03031818208954932468058188193, 2.62688782480522439807356017849, 2.67201338497142055084619081595, 2.83995562186468823654378980564, 3.18986345766012403224163924120, 3.24554581397598036876368584785, 3.28590817834723512813050154802, 3.84678764616181897334961248691, 4.07932918198831638818367437533, 4.58802398679959866710061836122, 4.69909309616188821483787809321, 4.72271820736228343799453897253, 4.97232893074457751734717892370, 5.13870464228729663608012801838, 5.37626723346144320415770465442, 5.53847089177282888754189162777, 5.87922755984119348496344402269, 5.88089786954278546467640145991, 6.21719957552703635874923542516, 6.54801771529231945686448002656