Properties

Label 8-2160e4-1.1-c1e4-0-13
Degree 88
Conductor 2.177×10132.177\times 10^{13}
Sign 11
Analytic cond. 88495.988495.9
Root an. cond. 4.153034.15303
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 6·7-s + 6·11-s − 6·17-s + 5·25-s − 18·35-s + 24·43-s + 11·49-s + 12·53-s + 18·55-s + 12·59-s + 22·61-s + 36·67-s − 36·77-s − 18·85-s + 22·109-s + 12·113-s + 36·119-s − 5·121-s + 18·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  + 1.34·5-s − 2.26·7-s + 1.80·11-s − 1.45·17-s + 25-s − 3.04·35-s + 3.65·43-s + 11/7·49-s + 1.64·53-s + 2.42·55-s + 1.56·59-s + 2.81·61-s + 4.39·67-s − 4.10·77-s − 1.95·85-s + 2.10·109-s + 1.12·113-s + 3.30·119-s − 0.454·121-s + 1.60·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

Λ(s)=((21631254)s/2ΓC(s)4L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((21631254)s/2ΓC(s+1/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 216312542^{16} \cdot 3^{12} \cdot 5^{4}
Sign: 11
Analytic conductor: 88495.988495.9
Root analytic conductor: 4.153034.15303
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 21631254, ( :1/2,1/2,1/2,1/2), 1)(8,\ 2^{16} \cdot 3^{12} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )

Particular Values

L(1)L(1) \approx 4.3588958704.358895870
L(12)L(\frac12) \approx 4.3588958704.358895870
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3 1 1
5C22C_2^2 13T+4T23pT3+p2T4 1 - 3 T + 4 T^{2} - 3 p T^{3} + p^{2} T^{4}
good7D4D_{4} (1+3T+8T2+3pT3+p2T4)2 ( 1 + 3 T + 8 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2}
11D4D_{4} (13T+16T23pT3+p2T4)2 ( 1 - 3 T + 16 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2}
13C22C_2^2 (114T2+p2T4)2 ( 1 - 14 T^{2} + p^{2} T^{4} )^{2}
17D4D_{4} (1+3T+28T2+3pT3+p2T4)2 ( 1 + 3 T + 28 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2}
19D4×C2D_4\times C_2 125T2+804T425p2T6+p4T8 1 - 25 T^{2} + 804 T^{4} - 25 p^{2} T^{6} + p^{4} T^{8}
23D4×C2D_4\times C_2 141T2+1404T441p2T6+p4T8 1 - 41 T^{2} + 1404 T^{4} - 41 p^{2} T^{6} + p^{4} T^{8}
29D4×C2D_4\times C_2 140T2+894T440p2T6+p4T8 1 - 40 T^{2} + 894 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8}
31C2C_2 (111T+pT2)2(1+11T+pT2)2 ( 1 - 11 T + p T^{2} )^{2}( 1 + 11 T + p T^{2} )^{2}
37C2C_2 (110T+pT2)2(1+10T+pT2)2 ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2}
41D4×C2D_4\times C_2 188T2+4110T488p2T6+p4T8 1 - 88 T^{2} + 4110 T^{4} - 88 p^{2} T^{6} + p^{4} T^{8}
43C2C_2 (16T+pT2)4 ( 1 - 6 T + p T^{2} )^{4}
47C22C_2^2 (182T2+p2T4)2 ( 1 - 82 T^{2} + p^{2} T^{4} )^{2}
53C2C_2 (13T+pT2)4 ( 1 - 3 T + p T^{2} )^{4}
59D4D_{4} (16T+94T26pT3+p2T4)2 ( 1 - 6 T + 94 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2}
61D4D_{4} (111T+78T211pT3+p2T4)2 ( 1 - 11 T + 78 T^{2} - 11 p T^{3} + p^{2} T^{4} )^{2}
67D4D_{4} (118T+182T218pT3+p2T4)2 ( 1 - 18 T + 182 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2}
71C22C_2^2 (1+10T2+p2T4)2 ( 1 + 10 T^{2} + p^{2} T^{4} )^{2}
73D4×C2D_4\times C_2 1+155T2+15996T4+155p2T6+p4T8 1 + 155 T^{2} + 15996 T^{4} + 155 p^{2} T^{6} + p^{4} T^{8}
79D4×C2D_4\times C_2 1253T2+27816T4253p2T6+p4T8 1 - 253 T^{2} + 27816 T^{4} - 253 p^{2} T^{6} + p^{4} T^{8}
83D4×C2D_4\times C_2 1110T2+12051T4110p2T6+p4T8 1 - 110 T^{2} + 12051 T^{4} - 110 p^{2} T^{6} + p^{4} T^{8}
89C22C_2^2 (1134T2+p2T4)2 ( 1 - 134 T^{2} + p^{2} T^{4} )^{2}
97D4×C2D_4\times C_2 1217T2+24576T4217p2T6+p4T8 1 - 217 T^{2} + 24576 T^{4} - 217 p^{2} T^{6} + p^{4} T^{8}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−6.59591989853160728361229085380, −6.14637752831145232464239941634, −6.00857270864712435662944824383, −5.96838985078712424839010301244, −5.78389124382186022751775724027, −5.52621889583253606394902536536, −5.13856755053604735724467175692, −5.07630565758247074950041596431, −4.85175486693120023857803267377, −4.44502068325708001735722729994, −4.10399929444701780770986322229, −3.99865346295344102090686601581, −3.91796271545713828688548292204, −3.68761963389447575571679360624, −3.37808282224618244030100608307, −3.14777086397621828075512634365, −2.89006660164479664498895725427, −2.31629908635367358053328557761, −2.22704655257250943678137057552, −2.21235064956171672515243806855, −2.19098813725216934666578866754, −1.28072977052046035449416812296, −1.00283764021904328094958535124, −0.854037541576172952218092913356, −0.39474973790131639170915055398, 0.39474973790131639170915055398, 0.854037541576172952218092913356, 1.00283764021904328094958535124, 1.28072977052046035449416812296, 2.19098813725216934666578866754, 2.21235064956171672515243806855, 2.22704655257250943678137057552, 2.31629908635367358053328557761, 2.89006660164479664498895725427, 3.14777086397621828075512634365, 3.37808282224618244030100608307, 3.68761963389447575571679360624, 3.91796271545713828688548292204, 3.99865346295344102090686601581, 4.10399929444701780770986322229, 4.44502068325708001735722729994, 4.85175486693120023857803267377, 5.07630565758247074950041596431, 5.13856755053604735724467175692, 5.52621889583253606394902536536, 5.78389124382186022751775724027, 5.96838985078712424839010301244, 6.00857270864712435662944824383, 6.14637752831145232464239941634, 6.59591989853160728361229085380

Graph of the ZZ-function along the critical line