Properties

Label 8-2160e4-1.1-c1e4-0-13
Degree $8$
Conductor $2.177\times 10^{13}$
Sign $1$
Analytic cond. $88495.9$
Root an. cond. $4.15303$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 6·7-s + 6·11-s − 6·17-s + 5·25-s − 18·35-s + 24·43-s + 11·49-s + 12·53-s + 18·55-s + 12·59-s + 22·61-s + 36·67-s − 36·77-s − 18·85-s + 22·109-s + 12·113-s + 36·119-s − 5·121-s + 18·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  + 1.34·5-s − 2.26·7-s + 1.80·11-s − 1.45·17-s + 25-s − 3.04·35-s + 3.65·43-s + 11/7·49-s + 1.64·53-s + 2.42·55-s + 1.56·59-s + 2.81·61-s + 4.39·67-s − 4.10·77-s − 1.95·85-s + 2.10·109-s + 1.12·113-s + 3.30·119-s − 0.454·121-s + 1.60·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{12} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(88495.9\)
Root analytic conductor: \(4.15303\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{12} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.358895870\)
\(L(\frac12)\) \(\approx\) \(4.358895870\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2^2$ \( 1 - 3 T + 4 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
good7$D_{4}$ \( ( 1 + 3 T + 8 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
11$D_{4}$ \( ( 1 - 3 T + 16 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
17$D_{4}$ \( ( 1 + 3 T + 28 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 25 T^{2} + 804 T^{4} - 25 p^{2} T^{6} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 41 T^{2} + 1404 T^{4} - 41 p^{2} T^{6} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 40 T^{2} + 894 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )^{2}( 1 + 11 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2} \)
41$D_4\times C_2$ \( 1 - 88 T^{2} + 4110 T^{4} - 88 p^{2} T^{6} + p^{4} T^{8} \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \)
59$D_{4}$ \( ( 1 - 6 T + 94 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 11 T + 78 T^{2} - 11 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 - 18 T + 182 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 + 155 T^{2} + 15996 T^{4} + 155 p^{2} T^{6} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 - 253 T^{2} + 27816 T^{4} - 253 p^{2} T^{6} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 - 110 T^{2} + 12051 T^{4} - 110 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 - 134 T^{2} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 217 T^{2} + 24576 T^{4} - 217 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.59591989853160728361229085380, −6.14637752831145232464239941634, −6.00857270864712435662944824383, −5.96838985078712424839010301244, −5.78389124382186022751775724027, −5.52621889583253606394902536536, −5.13856755053604735724467175692, −5.07630565758247074950041596431, −4.85175486693120023857803267377, −4.44502068325708001735722729994, −4.10399929444701780770986322229, −3.99865346295344102090686601581, −3.91796271545713828688548292204, −3.68761963389447575571679360624, −3.37808282224618244030100608307, −3.14777086397621828075512634365, −2.89006660164479664498895725427, −2.31629908635367358053328557761, −2.22704655257250943678137057552, −2.21235064956171672515243806855, −2.19098813725216934666578866754, −1.28072977052046035449416812296, −1.00283764021904328094958535124, −0.854037541576172952218092913356, −0.39474973790131639170915055398, 0.39474973790131639170915055398, 0.854037541576172952218092913356, 1.00283764021904328094958535124, 1.28072977052046035449416812296, 2.19098813725216934666578866754, 2.21235064956171672515243806855, 2.22704655257250943678137057552, 2.31629908635367358053328557761, 2.89006660164479664498895725427, 3.14777086397621828075512634365, 3.37808282224618244030100608307, 3.68761963389447575571679360624, 3.91796271545713828688548292204, 3.99865346295344102090686601581, 4.10399929444701780770986322229, 4.44502068325708001735722729994, 4.85175486693120023857803267377, 5.07630565758247074950041596431, 5.13856755053604735724467175692, 5.52621889583253606394902536536, 5.78389124382186022751775724027, 5.96838985078712424839010301244, 6.00857270864712435662944824383, 6.14637752831145232464239941634, 6.59591989853160728361229085380

Graph of the $Z$-function along the critical line