L(s) = 1 | − 3·5-s + 6·7-s + 6·11-s + 6·17-s + 5·25-s − 18·35-s − 24·43-s + 11·49-s − 12·53-s − 18·55-s + 12·59-s + 22·61-s − 36·67-s + 36·77-s − 18·85-s + 22·109-s − 12·113-s + 36·119-s − 5·121-s − 18·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
L(s) = 1 | − 1.34·5-s + 2.26·7-s + 1.80·11-s + 1.45·17-s + 25-s − 3.04·35-s − 3.65·43-s + 11/7·49-s − 1.64·53-s − 2.42·55-s + 1.56·59-s + 2.81·61-s − 4.39·67-s + 4.10·77-s − 1.95·85-s + 2.10·109-s − 1.12·113-s + 3.30·119-s − 0.454·121-s − 1.60·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
88495.9 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.358895870 |
L(21) |
≈ |
4.358895870 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C22 | 1+3T+4T2+3pT3+p2T4 |
good | 7 | D4 | (1−3T+8T2−3pT3+p2T4)2 |
| 11 | D4 | (1−3T+16T2−3pT3+p2T4)2 |
| 13 | C22 | (1−14T2+p2T4)2 |
| 17 | D4 | (1−3T+28T2−3pT3+p2T4)2 |
| 19 | D4×C2 | 1−25T2+804T4−25p2T6+p4T8 |
| 23 | D4×C2 | 1−41T2+1404T4−41p2T6+p4T8 |
| 29 | D4×C2 | 1−40T2+894T4−40p2T6+p4T8 |
| 31 | C2 | (1−11T+pT2)2(1+11T+pT2)2 |
| 37 | C2 | (1−10T+pT2)2(1+10T+pT2)2 |
| 41 | D4×C2 | 1−88T2+4110T4−88p2T6+p4T8 |
| 43 | C2 | (1+6T+pT2)4 |
| 47 | C22 | (1−82T2+p2T4)2 |
| 53 | C2 | (1+3T+pT2)4 |
| 59 | D4 | (1−6T+94T2−6pT3+p2T4)2 |
| 61 | D4 | (1−11T+78T2−11pT3+p2T4)2 |
| 67 | D4 | (1+18T+182T2+18pT3+p2T4)2 |
| 71 | C22 | (1+10T2+p2T4)2 |
| 73 | D4×C2 | 1+155T2+15996T4+155p2T6+p4T8 |
| 79 | D4×C2 | 1−253T2+27816T4−253p2T6+p4T8 |
| 83 | D4×C2 | 1−110T2+12051T4−110p2T6+p4T8 |
| 89 | C22 | (1−134T2+p2T4)2 |
| 97 | D4×C2 | 1−217T2+24576T4−217p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.33660322551234355351786961849, −6.25384774509474832836242725545, −6.19068819405059673960759778215, −5.61673595894994280939766238299, −5.56034292085955261996339090407, −5.53454965989862479457796541126, −4.95010914475644588452577792079, −4.89336054713826320562887304130, −4.81260101018612622303825195375, −4.53331293587707406749530955766, −4.37701047840381230615854579196, −4.13094447126929714585926569703, −3.81195323282954072651855807899, −3.62118755559918085025717421857, −3.38086182354188254117451582120, −3.32813640911016778759035261535, −2.90931706848926145515413634493, −2.78220779954210796095913006398, −2.14847542899726284688530348918, −1.87534219317307335857125956011, −1.64183104121081079248956001210, −1.55856239782758208204073208414, −1.18466151783060763859128630815, −0.811966546306140975447677245221, −0.37613737841077933550109035533,
0.37613737841077933550109035533, 0.811966546306140975447677245221, 1.18466151783060763859128630815, 1.55856239782758208204073208414, 1.64183104121081079248956001210, 1.87534219317307335857125956011, 2.14847542899726284688530348918, 2.78220779954210796095913006398, 2.90931706848926145515413634493, 3.32813640911016778759035261535, 3.38086182354188254117451582120, 3.62118755559918085025717421857, 3.81195323282954072651855807899, 4.13094447126929714585926569703, 4.37701047840381230615854579196, 4.53331293587707406749530955766, 4.81260101018612622303825195375, 4.89336054713826320562887304130, 4.95010914475644588452577792079, 5.53454965989862479457796541126, 5.56034292085955261996339090407, 5.61673595894994280939766238299, 6.19068819405059673960759778215, 6.25384774509474832836242725545, 6.33660322551234355351786961849