L(s) = 1 | + 12·11-s + 4·13-s − 24·23-s − 2·25-s + 8·37-s + 24·47-s + 4·49-s + 12·59-s − 4·61-s + 12·71-s + 4·73-s − 32·97-s − 48·107-s + 4·109-s + 52·121-s + 127-s + 131-s + 137-s + 139-s + 48·143-s + 149-s + 151-s + 157-s + 163-s + 167-s + 12·169-s + 173-s + ⋯ |
L(s) = 1 | + 3.61·11-s + 1.10·13-s − 5.00·23-s − 2/5·25-s + 1.31·37-s + 3.50·47-s + 4/7·49-s + 1.56·59-s − 0.512·61-s + 1.42·71-s + 0.468·73-s − 3.24·97-s − 4.64·107-s + 0.383·109-s + 4.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 4.01·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.923·169-s + 0.0760·173-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
88495.9 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.196581796 |
L(21) |
≈ |
4.196581796 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | (1+T2)2 |
good | 7 | D4×C2 | 1−4T2−6T4−4p2T6+p4T8 |
| 11 | D4 | (1−6T+28T2−6pT3+p2T4)2 |
| 13 | D4 | (1−2T−2pT3+p2T4)2 |
| 17 | C22 | (1−7T2+p2T4)2 |
| 19 | D4×C2 | 1−34T2+579T4−34p2T6+p4T8 |
| 23 | D4 | (1+12T+79T2+12pT3+p2T4)2 |
| 29 | D4×C2 | 1−44T2+1194T4−44p2T6+p4T8 |
| 31 | D4×C2 | 1−82T2+3171T4−82p2T6+p4T8 |
| 37 | C2 | (1−2T+pT2)4 |
| 41 | D4×C2 | 1−92T2+4506T4−92p2T6+p4T8 |
| 43 | D4×C2 | 1−4T2+1002T4−4p2T6+p4T8 |
| 47 | D4 | (1−12T+118T2−12pT3+p2T4)2 |
| 53 | D4×C2 | 1−86T2+3579T4−86p2T6+p4T8 |
| 59 | D4 | (1−6T+52T2−6pT3+p2T4)2 |
| 61 | C2 | (1+T+pT2)4 |
| 67 | C22 | (1−26T2+p2T4)2 |
| 71 | D4 | (1−6T+148T2−6pT3+p2T4)2 |
| 73 | D4 | (1−2T+120T2−2pT3+p2T4)2 |
| 79 | D4×C2 | 1−202T2+20955T4−202p2T6+p4T8 |
| 83 | C22 | (1+139T2+p2T4)2 |
| 89 | D4×C2 | 1−140T2+11994T4−140p2T6+p4T8 |
| 97 | C2 | (1+8T+pT2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.58419375687555026679701157218, −6.08848902854573756044185132745, −6.06680025212631090811517403248, −5.82657391349391843484439766218, −5.69630346055068226369794198039, −5.67740047924299222287591487497, −5.36834288999675612483169787054, −4.90332606115584730836988250686, −4.59701210179266857549394732317, −4.20655347708816041475239438060, −4.17986634769664571409090512376, −4.00356594034588411006981372264, −3.98952132474515535591517576670, −3.79616696703649373667506068245, −3.58413243263072182514323428625, −3.33149808263759768275105894124, −2.77039976744070424873159568624, −2.38417746702589173654462851348, −2.32550684349787033502632185703, −2.19874616451576287335400237850, −1.48999441325242354282972106993, −1.48164652490249028041693153842, −1.30780022258140895828684577990, −0.813451255177655805913773751107, −0.35413234837232041830278530207,
0.35413234837232041830278530207, 0.813451255177655805913773751107, 1.30780022258140895828684577990, 1.48164652490249028041693153842, 1.48999441325242354282972106993, 2.19874616451576287335400237850, 2.32550684349787033502632185703, 2.38417746702589173654462851348, 2.77039976744070424873159568624, 3.33149808263759768275105894124, 3.58413243263072182514323428625, 3.79616696703649373667506068245, 3.98952132474515535591517576670, 4.00356594034588411006981372264, 4.17986634769664571409090512376, 4.20655347708816041475239438060, 4.59701210179266857549394732317, 4.90332606115584730836988250686, 5.36834288999675612483169787054, 5.67740047924299222287591487497, 5.69630346055068226369794198039, 5.82657391349391843484439766218, 6.06680025212631090811517403248, 6.08848902854573756044185132745, 6.58419375687555026679701157218