L(s) = 1 | − 2·5-s + 4·7-s − 4·11-s + 4·13-s − 16·17-s + 8·19-s − 4·23-s + 25-s + 10·29-s − 4·31-s − 8·35-s + 6·41-s − 16·43-s − 4·47-s + 15·49-s − 24·53-s + 8·55-s − 8·59-s + 10·61-s − 8·65-s + 16·67-s + 24·71-s − 16·77-s + 24·79-s + 16·83-s + 32·85-s + 12·89-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 1.51·7-s − 1.20·11-s + 1.10·13-s − 3.88·17-s + 1.83·19-s − 0.834·23-s + 1/5·25-s + 1.85·29-s − 0.718·31-s − 1.35·35-s + 0.937·41-s − 2.43·43-s − 0.583·47-s + 15/7·49-s − 3.29·53-s + 1.07·55-s − 1.04·59-s + 1.28·61-s − 0.992·65-s + 1.95·67-s + 2.84·71-s − 1.82·77-s + 2.70·79-s + 1.75·83-s + 3.47·85-s + 1.27·89-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
88495.9 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.1790747144 |
L(21) |
≈ |
0.1790747144 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | (1+T+T2)2 |
good | 7 | D4×C2 | 1−4T+T2−4T3+64T4−4pT5+p2T6−4p3T7+p4T8 |
| 11 | D4×C2 | 1+4T+2T2−32T3−101T4−32pT5+2p2T6+4p3T7+p4T8 |
| 13 | D4×C2 | 1−4T−2T2+32T3−53T4+32pT5−2p2T6−4p3T7+p4T8 |
| 17 | D4 | (1+8T+38T2+8pT3+p2T4)2 |
| 19 | C2 | (1−2T+pT2)4 |
| 23 | D4×C2 | 1+4T−31T2+4T3+1312T4+4pT5−31p2T6+4p3T7+p4T8 |
| 29 | C2×C22 | (1−10T+pT2)2(1+10T+71T2+10pT3+p2T4) |
| 31 | C22 | (1+2T−27T2+2pT3+p2T4)2 |
| 37 | C22 | (1−34T2+p2T4)2 |
| 41 | D4×C2 | 1−6T−7T2+234T3−1308T4+234pT5−7p2T6−6p3T7+p4T8 |
| 43 | D4×C2 | 1+16T+118T2+832T3+6187T4+832pT5+118p2T6+16p3T7+p4T8 |
| 47 | D4×C2 | 1+4T−79T2+4T3+6064T4+4pT5−79p2T6+4p3T7+p4T8 |
| 53 | C2 | (1+6T+pT2)4 |
| 59 | D4×C2 | 1+8T+38T2−736T3−6581T4−736pT5+38p2T6+8p3T7+p4T8 |
| 61 | D4×C2 | 1−10T−35T2−130T3+8404T4−130pT5−35p2T6−10p3T7+p4T8 |
| 67 | D4×C2 | 1−16T+61T2−976T3+16384T4−976pT5+61p2T6−16p3T7+p4T8 |
| 71 | D4 | (1−12T+166T2−12pT3+p2T4)2 |
| 73 | C22 | (1+98T2+p2T4)2 |
| 79 | D4×C2 | 1−24T+286T2−3168T3+32355T4−3168pT5+286p2T6−24p3T7+p4T8 |
| 83 | D4×C2 | 1−16T+53T2−592T3+13072T4−592pT5+53p2T6−16p3T7+p4T8 |
| 89 | D4 | (1−6T+139T2−6pT3+p2T4)2 |
| 97 | D4×C2 | 1−4T−134T2+176T3+11539T4+176pT5−134p2T6−4p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.43680580679924451104690349274, −6.42725159080312343044274175579, −6.19551012861373935479170853890, −5.88774781281098208727645206792, −5.31563525225271243879866977467, −5.24528185166705126556254737932, −5.14242167740956203890334305998, −4.98894863731014607345378771328, −4.85742516698642617113826521396, −4.62176582837676369075936223040, −4.25053322852681914746467729030, −4.05981116256698429181254831358, −4.00643124339954078042677038716, −3.58959363533982929638887635145, −3.33876197036055713726498017737, −3.33488503960487398422299693220, −2.73946666455999579449883434709, −2.57425407281440385937809878161, −2.30373378258580713665776380240, −2.06816402390783266582383411502, −1.82803720839014302680172813056, −1.55582838615027315705183593673, −0.907493022977264738873338658089, −0.891179820985886843111427235684, −0.07793196059935338284176889426,
0.07793196059935338284176889426, 0.891179820985886843111427235684, 0.907493022977264738873338658089, 1.55582838615027315705183593673, 1.82803720839014302680172813056, 2.06816402390783266582383411502, 2.30373378258580713665776380240, 2.57425407281440385937809878161, 2.73946666455999579449883434709, 3.33488503960487398422299693220, 3.33876197036055713726498017737, 3.58959363533982929638887635145, 4.00643124339954078042677038716, 4.05981116256698429181254831358, 4.25053322852681914746467729030, 4.62176582837676369075936223040, 4.85742516698642617113826521396, 4.98894863731014607345378771328, 5.14242167740956203890334305998, 5.24528185166705126556254737932, 5.31563525225271243879866977467, 5.88774781281098208727645206792, 6.19551012861373935479170853890, 6.42725159080312343044274175579, 6.43680580679924451104690349274