L(s) = 1 | − 2·4-s + 3·16-s + 4·17-s + 4·19-s + 4·31-s − 4·47-s + 4·53-s − 4·64-s − 8·68-s − 8·76-s + 4·79-s − 4·109-s − 4·113-s − 8·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 8·188-s + ⋯ |
L(s) = 1 | − 2·4-s + 3·16-s + 4·17-s + 4·19-s + 4·31-s − 4·47-s + 4·53-s − 4·64-s − 8·68-s − 8·76-s + 4·79-s − 4·109-s − 4·113-s − 8·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 8·188-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
1.35034 |
Root analytic conductor: |
1.03825 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
1.444429684 |
L(21) |
≈ |
1.444429684 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.51365430204369063828084806564, −6.34033660299625330191893121681, −6.32492904311922242424183096741, −5.90596665185178497415205119033, −5.50067882348676699322112194661, −5.48244397069680638827321513553, −5.42331498553022058175997726393, −5.24465263767617297644196765222, −4.91850566462571358267776070422, −4.85402560668873980919629450803, −4.80282883277623440770059015313, −4.26955174502167684606224047712, −3.82491265488193320850354273197, −3.81055102782744502031573539565, −3.74460014154716811243422677034, −3.40287507272241670787520641834, −3.12546505449989127700786031103, −2.94775284821295146102062262321, −2.82505653744155938864322342252, −2.57825240248484960503014651720, −1.94436799820489478805099549287, −1.23837974652002235132161079893, −1.11347230893064976083318470057, −1.08810651104447672285511050984, −0.970317249283850218835519861589,
0.970317249283850218835519861589, 1.08810651104447672285511050984, 1.11347230893064976083318470057, 1.23837974652002235132161079893, 1.94436799820489478805099549287, 2.57825240248484960503014651720, 2.82505653744155938864322342252, 2.94775284821295146102062262321, 3.12546505449989127700786031103, 3.40287507272241670787520641834, 3.74460014154716811243422677034, 3.81055102782744502031573539565, 3.82491265488193320850354273197, 4.26955174502167684606224047712, 4.80282883277623440770059015313, 4.85402560668873980919629450803, 4.91850566462571358267776070422, 5.24465263767617297644196765222, 5.42331498553022058175997726393, 5.48244397069680638827321513553, 5.50067882348676699322112194661, 5.90596665185178497415205119033, 6.32492904311922242424183096741, 6.34033660299625330191893121681, 6.51365430204369063828084806564