Properties

Label 8-2160e4-1.1-c0e4-0-5
Degree $8$
Conductor $2.177\times 10^{13}$
Sign $1$
Analytic cond. $1.35034$
Root an. cond. $1.03825$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 3·16-s + 4·17-s + 4·19-s + 4·31-s − 4·47-s + 4·53-s − 4·64-s − 8·68-s − 8·76-s + 4·79-s − 4·109-s − 4·113-s − 8·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 8·188-s + ⋯
L(s)  = 1  − 2·4-s + 3·16-s + 4·17-s + 4·19-s + 4·31-s − 4·47-s + 4·53-s − 4·64-s − 8·68-s − 8·76-s + 4·79-s − 4·109-s − 4·113-s − 8·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 8·188-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{12} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1.35034\)
Root analytic conductor: \(1.03825\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{12} \cdot 5^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.444429684\)
\(L(\frac12)\) \(\approx\) \(1.444429684\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3 \( 1 \)
5$C_2^2$ \( 1 + T^{4} \)
good7$C_2^2$ \( ( 1 + T^{4} )^{2} \)
11$C_2^3$ \( 1 - T^{4} + T^{8} \)
13$C_2^3$ \( 1 - T^{4} + T^{8} \)
17$C_2$ \( ( 1 - T + T^{2} )^{4} \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
23$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
29$C_2^3$ \( 1 - T^{4} + T^{8} \)
31$C_2$ \( ( 1 - T + T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + T^{4} )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{4} \)
43$C_2^3$ \( 1 - T^{4} + T^{8} \)
47$C_2$ \( ( 1 + T + T^{2} )^{4} \)
53$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
59$C_2^2$ \( ( 1 + T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + T^{4} )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{4} \)
79$C_2$ \( ( 1 - T + T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.51365430204369063828084806564, −6.34033660299625330191893121681, −6.32492904311922242424183096741, −5.90596665185178497415205119033, −5.50067882348676699322112194661, −5.48244397069680638827321513553, −5.42331498553022058175997726393, −5.24465263767617297644196765222, −4.91850566462571358267776070422, −4.85402560668873980919629450803, −4.80282883277623440770059015313, −4.26955174502167684606224047712, −3.82491265488193320850354273197, −3.81055102782744502031573539565, −3.74460014154716811243422677034, −3.40287507272241670787520641834, −3.12546505449989127700786031103, −2.94775284821295146102062262321, −2.82505653744155938864322342252, −2.57825240248484960503014651720, −1.94436799820489478805099549287, −1.23837974652002235132161079893, −1.11347230893064976083318470057, −1.08810651104447672285511050984, −0.970317249283850218835519861589, 0.970317249283850218835519861589, 1.08810651104447672285511050984, 1.11347230893064976083318470057, 1.23837974652002235132161079893, 1.94436799820489478805099549287, 2.57825240248484960503014651720, 2.82505653744155938864322342252, 2.94775284821295146102062262321, 3.12546505449989127700786031103, 3.40287507272241670787520641834, 3.74460014154716811243422677034, 3.81055102782744502031573539565, 3.82491265488193320850354273197, 4.26955174502167684606224047712, 4.80282883277623440770059015313, 4.85402560668873980919629450803, 4.91850566462571358267776070422, 5.24465263767617297644196765222, 5.42331498553022058175997726393, 5.48244397069680638827321513553, 5.50067882348676699322112194661, 5.90596665185178497415205119033, 6.32492904311922242424183096741, 6.34033660299625330191893121681, 6.51365430204369063828084806564

Graph of the $Z$-function along the critical line