Properties

Label 8-2160e4-1.1-c0e4-0-4
Degree $8$
Conductor $2.177\times 10^{13}$
Sign $1$
Analytic cond. $1.35034$
Root an. cond. $1.03825$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·13-s − 16-s + 4·43-s − 4·61-s − 8·67-s + 4·79-s + 4·97-s + 4·103-s + 4·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s − 4·208-s + ⋯
L(s)  = 1  + 4·13-s − 16-s + 4·43-s − 4·61-s − 8·67-s + 4·79-s + 4·97-s + 4·103-s + 4·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s − 4·208-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{12} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1.35034\)
Root analytic conductor: \(1.03825\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{12} \cdot 5^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.866010395\)
\(L(\frac12)\) \(\approx\) \(1.866010395\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + T^{4} \)
3 \( 1 \)
5$C_2^2$ \( 1 + T^{4} \)
good7$C_2^2$ \( ( 1 + T^{4} )^{2} \)
11$C_2^3$ \( 1 - T^{4} + T^{8} \)
13$C_2$ \( ( 1 - T + T^{2} )^{4} \)
17$C_2^3$ \( 1 - T^{4} + T^{8} \)
19$C_2^2$ \( ( 1 + T^{4} )^{2} \)
23$C_2^3$ \( 1 - T^{4} + T^{8} \)
29$C_2^3$ \( 1 - T^{4} + T^{8} \)
31$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + T^{4} )^{2} \)
43$C_2$ \( ( 1 - T + T^{2} )^{4} \)
47$C_2^3$ \( 1 - T^{4} + T^{8} \)
53$C_2^2$ \( ( 1 + T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + T^{4} )^{2} \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
67$C_1$ \( ( 1 + T )^{8} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_2^2$ \( ( 1 + T^{4} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + T^{4} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.34395911253079863992755588639, −6.28804878744290457656649636560, −6.18977513684971683335564709606, −5.92128939355772233324332526796, −5.87122011656231905380225966440, −5.87005217889429243749792127137, −5.86014901763654521353025591785, −4.87647789558870307351524115810, −4.80200654485976270368628064404, −4.75940237151608450439752727147, −4.67505154122390280143155279133, −4.31460274816729762327262066864, −4.02217649545060334502972794743, −3.78030257639767920730206854393, −3.66466909963963894600455414189, −3.22748587578898096533824690291, −3.22721566942045914690209991482, −3.02859785345208158434072111812, −2.69936718627400046150890702690, −2.05799946024511865788737037551, −2.03708726662288201654305360948, −1.84698139170589525640033417564, −1.24981379391915894066428144000, −1.11715492894546494497931521665, −0.78519822039765553627000189864, 0.78519822039765553627000189864, 1.11715492894546494497931521665, 1.24981379391915894066428144000, 1.84698139170589525640033417564, 2.03708726662288201654305360948, 2.05799946024511865788737037551, 2.69936718627400046150890702690, 3.02859785345208158434072111812, 3.22721566942045914690209991482, 3.22748587578898096533824690291, 3.66466909963963894600455414189, 3.78030257639767920730206854393, 4.02217649545060334502972794743, 4.31460274816729762327262066864, 4.67505154122390280143155279133, 4.75940237151608450439752727147, 4.80200654485976270368628064404, 4.87647789558870307351524115810, 5.86014901763654521353025591785, 5.87005217889429243749792127137, 5.87122011656231905380225966440, 5.92128939355772233324332526796, 6.18977513684971683335564709606, 6.28804878744290457656649636560, 6.34395911253079863992755588639

Graph of the $Z$-function along the critical line