Properties

Label 8-2160e4-1.1-c0e4-0-3
Degree $8$
Conductor $2.177\times 10^{13}$
Sign $1$
Analytic cond. $1.35034$
Root an. cond. $1.03825$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 3·16-s − 4·17-s + 4·19-s + 4·31-s + 4·47-s − 4·53-s − 4·64-s + 8·68-s − 8·76-s + 4·79-s − 4·109-s + 4·113-s − 8·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s − 8·188-s + ⋯
L(s)  = 1  − 2·4-s + 3·16-s − 4·17-s + 4·19-s + 4·31-s + 4·47-s − 4·53-s − 4·64-s + 8·68-s − 8·76-s + 4·79-s − 4·109-s + 4·113-s − 8·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s − 8·188-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{12} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1.35034\)
Root analytic conductor: \(1.03825\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{12} \cdot 5^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7941612696\)
\(L(\frac12)\) \(\approx\) \(0.7941612696\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3 \( 1 \)
5$C_2^2$ \( 1 + T^{4} \)
good7$C_2^2$ \( ( 1 + T^{4} )^{2} \)
11$C_2^3$ \( 1 - T^{4} + T^{8} \)
13$C_2^3$ \( 1 - T^{4} + T^{8} \)
17$C_2$ \( ( 1 + T + T^{2} )^{4} \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
23$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
29$C_2^3$ \( 1 - T^{4} + T^{8} \)
31$C_2$ \( ( 1 - T + T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + T^{4} )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{4} \)
43$C_2^3$ \( 1 - T^{4} + T^{8} \)
47$C_2$ \( ( 1 - T + T^{2} )^{4} \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
59$C_2^2$ \( ( 1 + T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + T^{4} )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{4} \)
79$C_2$ \( ( 1 - T + T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.55090295747870129447713192329, −6.37868536208954240287024296718, −6.33625715295151641563856967775, −6.07356121775251998160959923331, −5.76346771413092523889889977936, −5.55978910583392285385163396250, −5.21723281758893574486414839805, −4.99390085124004374958723872221, −4.99282014844883649316989246006, −4.74793045520512264184654670387, −4.59898512648147778312873068240, −4.40886999868329333792093800180, −4.05802977341906386499302823398, −3.85749179312171973910118910423, −3.83492817778156374844949669927, −3.28956062057192296939018032324, −3.20377485212611317776624811218, −2.78365700511872524726253274281, −2.75183510207255080940771329695, −2.37350128787113147952784948725, −2.16327285279202566813070696185, −1.57335299944060337354564257844, −1.15776006786732501871274067496, −1.01710712023317427930031504358, −0.58725968488981043727340413373, 0.58725968488981043727340413373, 1.01710712023317427930031504358, 1.15776006786732501871274067496, 1.57335299944060337354564257844, 2.16327285279202566813070696185, 2.37350128787113147952784948725, 2.75183510207255080940771329695, 2.78365700511872524726253274281, 3.20377485212611317776624811218, 3.28956062057192296939018032324, 3.83492817778156374844949669927, 3.85749179312171973910118910423, 4.05802977341906386499302823398, 4.40886999868329333792093800180, 4.59898512648147778312873068240, 4.74793045520512264184654670387, 4.99282014844883649316989246006, 4.99390085124004374958723872221, 5.21723281758893574486414839805, 5.55978910583392285385163396250, 5.76346771413092523889889977936, 6.07356121775251998160959923331, 6.33625715295151641563856967775, 6.37868536208954240287024296718, 6.55090295747870129447713192329

Graph of the $Z$-function along the critical line