L(s) = 1 | − 4·19-s + 2·49-s − 4·61-s + 4·79-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + ⋯ |
L(s) = 1 | − 4·19-s + 2·49-s − 4·61-s + 4·79-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
1.35034 |
Root analytic conductor: |
1.03825 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
0.8150495650 |
L(21) |
≈ |
0.8150495650 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.51238460270033905146623495305, −6.50694258561531982445029001036, −6.50347751916732354917210509194, −5.99004745699615919943991739275, −5.89068762861157760291461271730, −5.63076908321124070471609486504, −5.38412833681878083567992811931, −5.33888141925683638682176174584, −4.71388620877052884621676361421, −4.67362916347042190253038986671, −4.47748150253517346951882482002, −4.46596650223500158213644188886, −4.12912090296278936926376274417, −3.81147327691642548807846911105, −3.68493575279538663600998276755, −3.39341794277616475597240913041, −3.13525931027800871266299781335, −2.79236654733543617383755313581, −2.43612157846312220841865952203, −2.40825720303266386130029002400, −1.95934878714665840016153863370, −1.86200313568443260690063170890, −1.58062512804029687945387432507, −0.994737123430730438835313106031, −0.46525003722821184951591825544,
0.46525003722821184951591825544, 0.994737123430730438835313106031, 1.58062512804029687945387432507, 1.86200313568443260690063170890, 1.95934878714665840016153863370, 2.40825720303266386130029002400, 2.43612157846312220841865952203, 2.79236654733543617383755313581, 3.13525931027800871266299781335, 3.39341794277616475597240913041, 3.68493575279538663600998276755, 3.81147327691642548807846911105, 4.12912090296278936926376274417, 4.46596650223500158213644188886, 4.47748150253517346951882482002, 4.67362916347042190253038986671, 4.71388620877052884621676361421, 5.33888141925683638682176174584, 5.38412833681878083567992811931, 5.63076908321124070471609486504, 5.89068762861157760291461271730, 5.99004745699615919943991739275, 6.50347751916732354917210509194, 6.50694258561531982445029001036, 6.51238460270033905146623495305