Properties

Label 8-2160e4-1.1-c0e4-0-1
Degree $8$
Conductor $2.177\times 10^{13}$
Sign $1$
Analytic cond. $1.35034$
Root an. cond. $1.03825$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·19-s + 2·49-s − 4·61-s + 4·79-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + ⋯
L(s)  = 1  − 4·19-s + 2·49-s − 4·61-s + 4·79-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{12} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1.35034\)
Root analytic conductor: \(1.03825\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{12} \cdot 5^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8150495650\)
\(L(\frac12)\) \(\approx\) \(0.8150495650\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2^2$ \( 1 + T^{4} \)
good7$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{4} \)
19$C_2$ \( ( 1 + T + T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + T^{4} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + T^{4} )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
47$C_2$ \( ( 1 + T^{2} )^{4} \)
53$C_2^2$ \( ( 1 + T^{4} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
61$C_2$ \( ( 1 + T + T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + T^{4} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.51238460270033905146623495305, −6.50694258561531982445029001036, −6.50347751916732354917210509194, −5.99004745699615919943991739275, −5.89068762861157760291461271730, −5.63076908321124070471609486504, −5.38412833681878083567992811931, −5.33888141925683638682176174584, −4.71388620877052884621676361421, −4.67362916347042190253038986671, −4.47748150253517346951882482002, −4.46596650223500158213644188886, −4.12912090296278936926376274417, −3.81147327691642548807846911105, −3.68493575279538663600998276755, −3.39341794277616475597240913041, −3.13525931027800871266299781335, −2.79236654733543617383755313581, −2.43612157846312220841865952203, −2.40825720303266386130029002400, −1.95934878714665840016153863370, −1.86200313568443260690063170890, −1.58062512804029687945387432507, −0.994737123430730438835313106031, −0.46525003722821184951591825544, 0.46525003722821184951591825544, 0.994737123430730438835313106031, 1.58062512804029687945387432507, 1.86200313568443260690063170890, 1.95934878714665840016153863370, 2.40825720303266386130029002400, 2.43612157846312220841865952203, 2.79236654733543617383755313581, 3.13525931027800871266299781335, 3.39341794277616475597240913041, 3.68493575279538663600998276755, 3.81147327691642548807846911105, 4.12912090296278936926376274417, 4.46596650223500158213644188886, 4.47748150253517346951882482002, 4.67362916347042190253038986671, 4.71388620877052884621676361421, 5.33888141925683638682176174584, 5.38412833681878083567992811931, 5.63076908321124070471609486504, 5.89068762861157760291461271730, 5.99004745699615919943991739275, 6.50347751916732354917210509194, 6.50694258561531982445029001036, 6.51238460270033905146623495305

Graph of the $Z$-function along the critical line