Properties

Label 8-208e4-1.1-c1e4-0-5
Degree $8$
Conductor $1871773696$
Sign $1$
Analytic cond. $7.60959$
Root an. cond. $1.28875$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s + 4·5-s + 15·9-s − 4·13-s + 24·15-s + 6·17-s − 6·23-s + 8·25-s + 18·27-s + 2·29-s − 4·37-s − 24·39-s + 12·41-s − 18·43-s + 60·45-s − 24·47-s − 9·49-s + 36·51-s − 8·53-s − 24·59-s − 14·61-s − 16·65-s + 24·67-s − 36·69-s − 4·73-s + 48·75-s + 9·81-s + ⋯
L(s)  = 1  + 3.46·3-s + 1.78·5-s + 5·9-s − 1.10·13-s + 6.19·15-s + 1.45·17-s − 1.25·23-s + 8/5·25-s + 3.46·27-s + 0.371·29-s − 0.657·37-s − 3.84·39-s + 1.87·41-s − 2.74·43-s + 8.94·45-s − 3.50·47-s − 9/7·49-s + 5.04·51-s − 1.09·53-s − 3.12·59-s − 1.79·61-s − 1.98·65-s + 2.93·67-s − 4.33·69-s − 0.468·73-s + 5.54·75-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(7.60959\)
Root analytic conductor: \(1.28875\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(6.417872488\)
\(L(\frac12)\) \(\approx\) \(6.417872488\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
good3$C_2$ \( ( 1 - p T + p T^{2} )^{2}( 1 + p T^{2} )^{2} \) 4.3.ag_v_acc_ee
5$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 2 T + p T^{2} )^{2} \) 4.5.ae_i_abc_dq
7$D_4\times C_2$ \( 1 + 9 T^{2} + 24 T^{3} + 44 T^{4} + 24 p T^{5} + 9 p^{2} T^{6} + p^{4} T^{8} \) 4.7.a_j_y_bs
11$D_4\times C_2$ \( 1 + 9 T^{2} - 48 T^{3} + 20 T^{4} - 48 p T^{5} + 9 p^{2} T^{6} + p^{4} T^{8} \) 4.11.a_j_abw_u
17$C_2$$\times$$C_2^2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 - 2 T - 13 T^{2} - 2 p T^{3} + p^{2} T^{4} ) \) 4.17.ag_bh_aew_ns
19$D_4\times C_2$ \( 1 + 9 T^{2} + 96 T^{3} - 124 T^{4} + 96 p T^{5} + 9 p^{2} T^{6} + p^{4} T^{8} \) 4.19.a_j_ds_aeu
23$C_2^2$ \( ( 1 + 3 T - 14 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \) 4.23.g_at_cc_cme
29$D_4\times C_2$ \( 1 - 2 T - 7 T^{2} + 94 T^{3} - 836 T^{4} + 94 p T^{5} - 7 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \) 4.29.ac_ah_dq_abge
31$C_2^3$ \( 1 - 1858 T^{4} + p^{4} T^{8} \) 4.31.a_a_a_actm
37$D_4\times C_2$ \( 1 + 4 T + 29 T^{2} - 288 T^{3} - 988 T^{4} - 288 p T^{5} + 29 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \) 4.37.e_bd_alc_abma
41$D_4\times C_2$ \( 1 - 12 T + 117 T^{2} - 840 T^{3} + 5804 T^{4} - 840 p T^{5} + 117 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \) 4.41.am_en_abgi_ipg
43$C_2^2$ \( ( 1 + 9 T + 38 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \) 4.43.s_gb_cec_rxs
47$D_4\times C_2$ \( 1 + 24 T + 288 T^{2} + 2712 T^{3} + 21182 T^{4} + 2712 p T^{5} + 288 p^{2} T^{6} + 24 p^{3} T^{7} + p^{4} T^{8} \) 4.47.y_lc_eai_bfis
53$D_{4}$ \( ( 1 + 4 T + 62 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.53.i_fk_bjk_qne
59$D_4\times C_2$ \( 1 + 24 T + 369 T^{2} + 3864 T^{3} + 33572 T^{4} + 3864 p T^{5} + 369 p^{2} T^{6} + 24 p^{3} T^{7} + p^{4} T^{8} \) 4.59.y_of_fsq_bxrg
61$C_2^2$ \( ( 1 + 7 T - 12 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{2} \) 4.61.o_z_bak_ubs
67$D_4\times C_2$ \( 1 - 24 T + 153 T^{2} + 1224 T^{3} - 22972 T^{4} + 1224 p T^{5} + 153 p^{2} T^{6} - 24 p^{3} T^{7} + p^{4} T^{8} \) 4.67.ay_fx_bvc_abhzo
71$D_4\times C_2$ \( 1 + 225 T^{2} - 120 T^{3} + 21884 T^{4} - 120 p T^{5} + 225 p^{2} T^{6} + p^{4} T^{8} \) 4.71.a_ir_aeq_bgjs
73$D_4\times C_2$ \( 1 + 4 T + 8 T^{2} + 204 T^{3} + 4718 T^{4} + 204 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \) 4.73.e_i_hw_gzm
79$C_2^2$ \( ( 1 - 146 T^{2} + p^{2} T^{4} )^{2} \) 4.79.a_alg_a_bxzy
83$D_4\times C_2$ \( 1 + 24 T + 288 T^{2} + 2424 T^{3} + 20078 T^{4} + 2424 p T^{5} + 288 p^{2} T^{6} + 24 p^{3} T^{7} + p^{4} T^{8} \) 4.83.y_lc_dpg_bdsg
89$D_4\times C_2$ \( 1 - 20 T + 389 T^{2} - 4544 T^{3} + 52396 T^{4} - 4544 p T^{5} + 389 p^{2} T^{6} - 20 p^{3} T^{7} + p^{4} T^{8} \) 4.89.au_oz_agsu_czng
97$D_4\times C_2$ \( 1 - 28 T + 365 T^{2} - 2952 T^{3} + 23468 T^{4} - 2952 p T^{5} + 365 p^{2} T^{6} - 28 p^{3} T^{7} + p^{4} T^{8} \) 4.97.abc_ob_aejo_bisq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.054482000565174234503160445750, −8.656524559297565817460090580009, −8.542532302894454763603954529221, −8.520541066036152851466719803068, −8.108095258317505219031585617331, −7.70567686444756327970190451058, −7.66837542420290957015782850035, −7.41644842339853041965839102429, −7.24776470278330602516669226603, −6.40748437373350895811276581600, −6.17886846544026078597851160634, −6.16401144708857607678496748641, −6.10546947565302255648034196316, −5.21853820448772357430426992781, −4.85053725120525119258248229924, −4.84360533936547627720162956437, −4.63295853889826019292726055607, −3.62377759395975503792221136606, −3.33583754078474772465049434718, −3.24140237695892315550143728607, −3.18067338376886877885143876598, −2.56797699882190693986499995166, −2.05756664838828787393053809004, −1.97193328538350665665294849178, −1.59593857610949328796608826636, 1.59593857610949328796608826636, 1.97193328538350665665294849178, 2.05756664838828787393053809004, 2.56797699882190693986499995166, 3.18067338376886877885143876598, 3.24140237695892315550143728607, 3.33583754078474772465049434718, 3.62377759395975503792221136606, 4.63295853889826019292726055607, 4.84360533936547627720162956437, 4.85053725120525119258248229924, 5.21853820448772357430426992781, 6.10546947565302255648034196316, 6.16401144708857607678496748641, 6.17886846544026078597851160634, 6.40748437373350895811276581600, 7.24776470278330602516669226603, 7.41644842339853041965839102429, 7.66837542420290957015782850035, 7.70567686444756327970190451058, 8.108095258317505219031585617331, 8.520541066036152851466719803068, 8.542532302894454763603954529221, 8.656524559297565817460090580009, 9.054482000565174234503160445750

Graph of the $Z$-function along the critical line