Properties

Label 8-2016e4-1.1-c1e4-0-7
Degree $8$
Conductor $1.652\times 10^{13}$
Sign $1$
Analytic cond. $67153.7$
Root an. cond. $4.01221$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 4·17-s − 20·23-s + 12·25-s − 8·31-s + 4·41-s + 10·49-s + 36·71-s + 48·73-s + 8·79-s − 20·89-s − 32·97-s − 24·103-s − 16·119-s + 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 80·161-s + 163-s + 167-s + 20·169-s + 173-s + ⋯
L(s)  = 1  + 1.51·7-s − 0.970·17-s − 4.17·23-s + 12/5·25-s − 1.43·31-s + 0.624·41-s + 10/7·49-s + 4.27·71-s + 5.61·73-s + 0.900·79-s − 2.11·89-s − 3.24·97-s − 2.36·103-s − 1.46·119-s + 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s − 6.30·161-s + 0.0783·163-s + 0.0773·167-s + 1.53·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(67153.7\)
Root analytic conductor: \(4.01221\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.510358434\)
\(L(\frac12)\) \(\approx\) \(2.510358434\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_1$ \( ( 1 - T )^{4} \)
good5$D_4\times C_2$ \( 1 - 12 T^{2} + 74 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 - 20 T^{2} + 234 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
13$D_4\times C_2$ \( 1 - 20 T^{2} + 246 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
17$D_{4}$ \( ( 1 + 2 T + 8 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 20 T^{2} + 54 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
23$D_{4}$ \( ( 1 + 10 T + 68 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
37$D_4\times C_2$ \( 1 - 44 T^{2} + 2454 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 2 T + 8 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 116 T^{2} + 6294 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 12 T^{2} - 5290 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
67$C_2^2$ \( ( 1 - 98 T^{2} + p^{2} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 - 18 T + 220 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_{4}$ \( ( 1 - 24 T + 278 T^{2} - 24 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 - 4 T + 54 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 300 T^{2} + 36086 T^{4} - 300 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 + 10 T + 200 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 + 16 T + 246 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.66313779823959812153102196795, −6.18551449353393857299555901561, −6.09126660305747361075555799767, −5.86044081453164749999837476206, −5.69380466120448346493350099845, −5.34390676962879474448260994216, −5.22491547959676074008932550648, −5.04836046772993602730157168127, −4.91060950095146864604474394926, −4.44726052038454662811356033156, −4.37175803587553926034855918300, −4.11227506876771618846217451053, −3.96994237637406094667560154953, −3.79926149014590327908591312577, −3.38787570915286360475744204399, −3.23280942208390559914569181318, −2.96327571332404439739415450895, −2.24444579070701132031741360732, −2.16871039585241816417752557442, −2.16780332767824395728969106360, −2.11304742865446318557385712407, −1.53277523534804348153649611527, −1.05996545480053106917147034807, −0.846634010086300983164840959624, −0.28581014538454945046375747238, 0.28581014538454945046375747238, 0.846634010086300983164840959624, 1.05996545480053106917147034807, 1.53277523534804348153649611527, 2.11304742865446318557385712407, 2.16780332767824395728969106360, 2.16871039585241816417752557442, 2.24444579070701132031741360732, 2.96327571332404439739415450895, 3.23280942208390559914569181318, 3.38787570915286360475744204399, 3.79926149014590327908591312577, 3.96994237637406094667560154953, 4.11227506876771618846217451053, 4.37175803587553926034855918300, 4.44726052038454662811356033156, 4.91060950095146864604474394926, 5.04836046772993602730157168127, 5.22491547959676074008932550648, 5.34390676962879474448260994216, 5.69380466120448346493350099845, 5.86044081453164749999837476206, 6.09126660305747361075555799767, 6.18551449353393857299555901561, 6.66313779823959812153102196795

Graph of the $Z$-function along the critical line