Properties

Label 8-2016e4-1.1-c1e4-0-3
Degree $8$
Conductor $1.652\times 10^{13}$
Sign $1$
Analytic cond. $67153.7$
Root an. cond. $4.01221$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·13-s + 4·25-s − 2·49-s − 56·61-s − 24·73-s − 56·97-s + 48·109-s − 40·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 12·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 2.21·13-s + 4/5·25-s − 2/7·49-s − 7.17·61-s − 2.80·73-s − 5.68·97-s + 4.59·109-s − 3.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.923·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(67153.7\)
Root analytic conductor: \(4.01221\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.6486425830\)
\(L(\frac12)\) \(\approx\) \(0.6486425830\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 20 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
17$C_2$ \( ( 1 - p T^{2} )^{4} \)
19$C_2$ \( ( 1 - p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 40 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 88 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 110 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 14 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 92 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 106 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.45395562642449660141746778741, −6.43441876828900572970375733728, −6.25456939991234159985501383387, −5.70958883213699101794291930542, −5.64739558181282096177381646039, −5.45134145812226616470449838336, −5.37244848859719355475287577929, −4.83705498833167358416491705276, −4.74802571157142289038999913584, −4.61929811004212363961206708831, −4.46101054022409817401880442905, −4.22470355973473536538549117117, −4.00924234978420940382886947876, −3.59958093013743889585048963707, −3.32725408469917901749656852368, −2.95393654252162424218046187240, −2.80212292510036994662328863548, −2.77783392857995085703289123041, −2.64997537838759852476012929644, −1.91814148541747434332632901686, −1.78781076218911119458511871537, −1.47874488893559954389493611207, −1.35896686894928774431925936307, −0.56557605447525627040454183607, −0.18336990947785650624021473923, 0.18336990947785650624021473923, 0.56557605447525627040454183607, 1.35896686894928774431925936307, 1.47874488893559954389493611207, 1.78781076218911119458511871537, 1.91814148541747434332632901686, 2.64997537838759852476012929644, 2.77783392857995085703289123041, 2.80212292510036994662328863548, 2.95393654252162424218046187240, 3.32725408469917901749656852368, 3.59958093013743889585048963707, 4.00924234978420940382886947876, 4.22470355973473536538549117117, 4.46101054022409817401880442905, 4.61929811004212363961206708831, 4.74802571157142289038999913584, 4.83705498833167358416491705276, 5.37244848859719355475287577929, 5.45134145812226616470449838336, 5.64739558181282096177381646039, 5.70958883213699101794291930542, 6.25456939991234159985501383387, 6.43441876828900572970375733728, 6.45395562642449660141746778741

Graph of the $Z$-function along the critical line