Properties

Label 8-200e4-1.1-c1e4-0-7
Degree $8$
Conductor $1600000000$
Sign $1$
Analytic cond. $6.50471$
Root an. cond. $1.26372$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 4·7-s + 4·8-s + 4·9-s + 8·14-s + 8·16-s + 8·18-s + 4·23-s + 8·28-s − 8·31-s + 8·32-s + 8·36-s − 8·41-s + 8·46-s − 20·47-s − 12·49-s + 16·56-s − 16·62-s + 16·63-s + 8·64-s + 8·71-s + 16·72-s − 16·73-s − 32·79-s + 6·81-s − 16·82-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 1.51·7-s + 1.41·8-s + 4/3·9-s + 2.13·14-s + 2·16-s + 1.88·18-s + 0.834·23-s + 1.51·28-s − 1.43·31-s + 1.41·32-s + 4/3·36-s − 1.24·41-s + 1.17·46-s − 2.91·47-s − 1.71·49-s + 2.13·56-s − 2.03·62-s + 2.01·63-s + 64-s + 0.949·71-s + 1.88·72-s − 1.87·73-s − 3.60·79-s + 2/3·81-s − 1.76·82-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(6.50471\)
Root analytic conductor: \(1.26372\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.875858435\)
\(L(\frac12)\) \(\approx\) \(4.875858435\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2^2$ \( 1 - p T + p T^{2} - p^{2} T^{3} + p^{2} T^{4} \)
5 \( 1 \)
good3$D_4\times C_2$ \( 1 - 4 T^{2} + 10 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \) 4.3.a_ae_a_k
7$D_{4}$ \( ( 1 - 2 T + 12 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.7.ae_bc_acy_lm
11$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \) 4.11.a_abk_a_vu
13$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \) 4.13.a_abc_a_uo
17$C_2^2$ \( ( 1 + 22 T^{2} + p^{2} T^{4} )^{2} \) 4.17.a_bs_a_bow
19$D_4\times C_2$ \( 1 - 20 T^{2} + 54 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \) 4.19.a_au_a_cc
23$D_{4}$ \( ( 1 - 2 T + 20 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.23.ae_bs_agq_cle
29$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \) 4.29.a_au_a_cqo
31$D_{4}$ \( ( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.31.i_eu_bae_iqg
37$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \) 4.37.a_afk_a_lhu
41$D_{4}$ \( ( 1 + 4 T + 74 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.41.i_gi_bjk_pak
43$D_4\times C_2$ \( 1 - 68 T^{2} + 4266 T^{4} - 68 p^{2} T^{6} + p^{4} T^{8} \) 4.43.a_acq_a_gic
47$D_{4}$ \( ( 1 + 10 T + 116 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \) 4.47.u_mu_evk_boja
53$D_4\times C_2$ \( 1 - 60 T^{2} + 3446 T^{4} - 60 p^{2} T^{6} + p^{4} T^{8} \) 4.53.a_aci_a_fco
59$D_4\times C_2$ \( 1 - 180 T^{2} + 14294 T^{4} - 180 p^{2} T^{6} + p^{4} T^{8} \) 4.59.a_agy_a_vdu
61$D_4\times C_2$ \( 1 - 140 T^{2} + 11574 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \) 4.61.a_afk_a_rde
67$D_4\times C_2$ \( 1 - 100 T^{2} + 10506 T^{4} - 100 p^{2} T^{6} + p^{4} T^{8} \) 4.67.a_adw_a_poc
71$D_{4}$ \( ( 1 - 4 T + 134 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.71.ai_ky_aclc_bsvu
73$D_{4}$ \( ( 1 + 8 T + 150 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \) 4.73.q_oa_fhg_ckws
79$D_{4}$ \( ( 1 + 16 T + 174 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \) 4.79.bg_xg_lzk_etcg
83$D_4\times C_2$ \( 1 - 308 T^{2} + 37386 T^{4} - 308 p^{2} T^{6} + p^{4} T^{8} \) 4.83.a_alw_a_cdhy
89$D_{4}$ \( ( 1 - 4 T + 134 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.89.ai_ky_acqq_ccfm
97$D_{4}$ \( ( 1 - 8 T + 102 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \) 4.97.aq_ki_aesm_cjpm
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.013758836363201580201155147901, −8.972932572654809180346407228696, −8.388878055674106088832302406700, −8.237881899898414674359498437509, −7.926355947701997810716764479918, −7.86157264842483511298107402869, −7.34284845134376802528979596671, −7.28601238535297850720143320124, −6.83291220485538776692749363331, −6.74762410876947136090532186280, −6.42725474082146945134677209836, −5.85041551936445313113891560737, −5.70941848086089266445339497339, −5.18600007951943416347800487239, −5.02882779130563354887572436271, −4.87015517522962115371896364688, −4.50891841420106988357796324547, −4.29972863374502112967357765166, −3.97055997904480693761724235852, −3.39480704296945405252045678404, −3.27991297599157474048785793937, −2.78268952173905654153624522446, −1.83342274361543785051074145781, −1.60987450182671263655638784436, −1.53090805213268930119725659074, 1.53090805213268930119725659074, 1.60987450182671263655638784436, 1.83342274361543785051074145781, 2.78268952173905654153624522446, 3.27991297599157474048785793937, 3.39480704296945405252045678404, 3.97055997904480693761724235852, 4.29972863374502112967357765166, 4.50891841420106988357796324547, 4.87015517522962115371896364688, 5.02882779130563354887572436271, 5.18600007951943416347800487239, 5.70941848086089266445339497339, 5.85041551936445313113891560737, 6.42725474082146945134677209836, 6.74762410876947136090532186280, 6.83291220485538776692749363331, 7.28601238535297850720143320124, 7.34284845134376802528979596671, 7.86157264842483511298107402869, 7.926355947701997810716764479918, 8.237881899898414674359498437509, 8.388878055674106088832302406700, 8.972932572654809180346407228696, 9.013758836363201580201155147901

Graph of the $Z$-function along the critical line