Properties

Label 8-200e4-1.1-c1e4-0-3
Degree $8$
Conductor $1600000000$
Sign $1$
Analytic cond. $6.50471$
Root an. cond. $1.26372$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·4-s + 2·9-s + 5·16-s + 16·31-s + 6·36-s − 20·41-s − 4·49-s + 3·64-s + 32·71-s − 16·79-s − 15·81-s + 4·89-s + 30·121-s + 48·124-s + 127-s + 131-s + 137-s + 139-s + 10·144-s + 149-s + 151-s + 157-s + 163-s − 60·164-s + 167-s − 52·169-s + 173-s + ⋯
L(s)  = 1  + 3/2·4-s + 2/3·9-s + 5/4·16-s + 2.87·31-s + 36-s − 3.12·41-s − 4/7·49-s + 3/8·64-s + 3.79·71-s − 1.80·79-s − 5/3·81-s + 0.423·89-s + 2.72·121-s + 4.31·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5/6·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s − 4.68·164-s + 0.0773·167-s − 4·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(6.50471\)
Root analytic conductor: \(1.26372\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.481595648\)
\(L(\frac12)\) \(\approx\) \(2.481595648\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
5 \( 1 \)
good3$C_2^2$ \( ( 1 - T^{2} + p^{2} T^{4} )^{2} \) 4.3.a_ac_a_t
7$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \) 4.7.a_e_a_dy
11$C_2^2$ \( ( 1 - 15 T^{2} + p^{2} T^{4} )^{2} \) 4.11.a_abe_a_rz
13$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.13.a_ca_a_bna
17$C_2^2$ \( ( 1 - 25 T^{2} + p^{2} T^{4} )^{2} \) 4.17.a_aby_a_buh
19$C_2^2$ \( ( 1 - 31 T^{2} + p^{2} T^{4} )^{2} \) 4.19.a_ack_a_cmt
23$C_2^2$ \( ( 1 - 30 T^{2} + p^{2} T^{4} )^{2} \) 4.23.a_aci_a_cxi
29$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.29.a_aem_a_hmc
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \) 4.31.aq_im_acpc_rso
37$C_2^2$ \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{2} \) 4.37.a_acy_a_gew
41$C_2$ \( ( 1 + 5 T + p T^{2} )^{4} \) 4.41.u_mc_ejw_bibb
43$C_2^2$ \( ( 1 + 58 T^{2} + p^{2} T^{4} )^{2} \) 4.43.a_em_a_klq
47$C_2^2$ \( ( 1 - 30 T^{2} + p^{2} T^{4} )^{2} \) 4.47.a_aci_a_hwo
53$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \) 4.53.a_am_a_ijm
59$C_2^2$ \( ( 1 - 90 T^{2} + p^{2} T^{4} )^{2} \) 4.59.a_agy_a_whi
61$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \) 4.61.a_au_a_lec
67$C_2^2$ \( ( 1 + 71 T^{2} + p^{2} T^{4} )^{2} \) 4.67.a_fm_a_utf
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \) 4.71.abg_zs_ancy_fbmc
73$C_2^2$ \( ( 1 - 97 T^{2} + p^{2} T^{4} )^{2} \) 4.73.a_ahm_a_bdrv
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \) 4.79.q_pw_fzs_dafm
83$C_2^2$ \( ( 1 + 103 T^{2} + p^{2} T^{4} )^{2} \) 4.83.a_hy_a_bkbz
89$C_2$ \( ( 1 - T + p T^{2} )^{4} \) 4.89.ae_ny_abpg_ctxb
97$C_2^2$ \( ( 1 - 190 T^{2} + p^{2} T^{4} )^{2} \) 4.97.a_aoq_a_ddgg
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.190607393385172179734590056136, −8.605537402077930067745739153173, −8.586212018657907730774990811163, −8.375610926513820072529665094237, −8.001034426001162320652754232316, −7.73565745543270063342162743222, −7.56656523134970228466926862886, −7.08350979943628006797820629194, −6.85313421774544453589408028956, −6.63224920823709166006098030981, −6.58208622324050151875550052676, −6.22374337506708269031862472825, −5.85502028149049305838723519637, −5.37092937476263134399023166095, −5.33017780950534025516329791163, −4.68010370972612999007388483110, −4.59533903115521122854606799298, −4.21054357404571717333386696193, −3.65581506697939024858887814472, −3.19503564901073142508403368303, −3.14325443589533872306967242419, −2.51054797241481095901075845225, −2.13070617041045605093388771132, −1.67095650089860251827778479311, −1.06737227812559465230353803346, 1.06737227812559465230353803346, 1.67095650089860251827778479311, 2.13070617041045605093388771132, 2.51054797241481095901075845225, 3.14325443589533872306967242419, 3.19503564901073142508403368303, 3.65581506697939024858887814472, 4.21054357404571717333386696193, 4.59533903115521122854606799298, 4.68010370972612999007388483110, 5.33017780950534025516329791163, 5.37092937476263134399023166095, 5.85502028149049305838723519637, 6.22374337506708269031862472825, 6.58208622324050151875550052676, 6.63224920823709166006098030981, 6.85313421774544453589408028956, 7.08350979943628006797820629194, 7.56656523134970228466926862886, 7.73565745543270063342162743222, 8.001034426001162320652754232316, 8.375610926513820072529665094237, 8.586212018657907730774990811163, 8.605537402077930067745739153173, 9.190607393385172179734590056136

Graph of the $Z$-function along the critical line