Properties

Label 8-1920e4-1.1-c1e4-0-53
Degree $8$
Conductor $135895.450\times 10^{8}$
Sign $1$
Analytic cond. $55247.5$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s − 8·7-s + 12·13-s + 4·17-s − 8·23-s + 38·25-s − 64·35-s + 4·37-s + 16·41-s + 24·43-s + 32·49-s + 12·53-s + 24·59-s + 96·65-s + 8·67-s + 4·73-s + 8·79-s − 81-s + 32·83-s + 32·85-s − 96·91-s + 20·97-s − 8·101-s − 16·103-s − 8·107-s − 12·113-s − 64·115-s + ⋯
L(s)  = 1  + 3.57·5-s − 3.02·7-s + 3.32·13-s + 0.970·17-s − 1.66·23-s + 38/5·25-s − 10.8·35-s + 0.657·37-s + 2.49·41-s + 3.65·43-s + 32/7·49-s + 1.64·53-s + 3.12·59-s + 11.9·65-s + 0.977·67-s + 0.468·73-s + 0.900·79-s − 1/9·81-s + 3.51·83-s + 3.47·85-s − 10.0·91-s + 2.03·97-s − 0.796·101-s − 1.57·103-s − 0.773·107-s − 1.12·113-s − 5.96·115-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(55247.5\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(13.60616450\)
\(L(\frac12)\) \(\approx\) \(13.60616450\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + T^{4} \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 - 20 T^{2} + 214 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
13$D_4\times C_2$ \( 1 - 12 T + 72 T^{2} - 324 T^{3} + 1262 T^{4} - 324 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 4 T + 8 T^{2} - 60 T^{3} + 446 T^{4} - 60 p T^{5} + 8 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
19$C_2$ \( ( 1 + p T^{2} )^{4} \)
23$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} + 120 T^{3} + 386 T^{4} + 120 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 36 T^{2} + 1094 T^{4} - 36 p^{2} T^{6} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 4 T + 8 T^{2} + 244 T^{3} - 2162 T^{4} + 244 p T^{5} + 8 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 8 T + 90 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 24 T + 288 T^{2} - 2376 T^{3} + 16466 T^{4} - 2376 p T^{5} + 288 p^{2} T^{6} - 24 p^{3} T^{7} + p^{4} T^{8} \)
47$C_2^3$ \( 1 + 1666 T^{4} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 12 T + 72 T^{2} - 660 T^{3} + 6046 T^{4} - 660 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 - 12 T + 146 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 8 T + 32 T^{2} - 472 T^{3} + 6898 T^{4} - 472 p T^{5} + 32 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 92 T^{2} + 4006 T^{4} - 92 p^{2} T^{6} + p^{4} T^{8} \)
73$C_2$$\times$$C_2^2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 - 142 T^{2} + p^{2} T^{4} ) \)
79$D_{4}$ \( ( 1 - 4 T + 154 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 32 T + 512 T^{2} - 6240 T^{3} + 63506 T^{4} - 6240 p T^{5} + 512 p^{2} T^{6} - 32 p^{3} T^{7} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 - 180 T^{2} + 19334 T^{4} - 180 p^{2} T^{6} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 20 T + 200 T^{2} - 1660 T^{3} + 13582 T^{4} - 1660 p T^{5} + 200 p^{2} T^{6} - 20 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.37324679981544697867096924300, −6.34707358569238709955674619125, −6.13782428342623711810453523268, −6.07729195737725360518240194283, −5.83647083271117622003369209966, −5.44942128813725968819610734156, −5.42437255914835200099839650891, −5.35614084928178554928463384249, −5.29844189217233516570266329389, −4.36202610284005125097471416710, −4.25215672779272073111138638255, −4.13337577898750993258042309792, −3.96338357931677975704060342641, −3.49009516529616672467208103833, −3.39743269108983027259656642156, −3.21016238693102485309374361947, −2.95635346546357962155082297915, −2.41857985808949959039766521344, −2.32531473344134049623209543101, −2.19438948224497527073737064795, −2.13404369325961730368542105147, −1.37658194746318917254880932753, −0.963976741028657649575239368549, −0.834403957783126961050547028966, −0.830082995303393776179049750998, 0.830082995303393776179049750998, 0.834403957783126961050547028966, 0.963976741028657649575239368549, 1.37658194746318917254880932753, 2.13404369325961730368542105147, 2.19438948224497527073737064795, 2.32531473344134049623209543101, 2.41857985808949959039766521344, 2.95635346546357962155082297915, 3.21016238693102485309374361947, 3.39743269108983027259656642156, 3.49009516529616672467208103833, 3.96338357931677975704060342641, 4.13337577898750993258042309792, 4.25215672779272073111138638255, 4.36202610284005125097471416710, 5.29844189217233516570266329389, 5.35614084928178554928463384249, 5.42437255914835200099839650891, 5.44942128813725968819610734156, 5.83647083271117622003369209966, 6.07729195737725360518240194283, 6.13782428342623711810453523268, 6.34707358569238709955674619125, 6.37324679981544697867096924300

Graph of the $Z$-function along the critical line