Properties

Label 8-1920e4-1.1-c1e4-0-47
Degree $8$
Conductor $135895.450\times 10^{8}$
Sign $1$
Analytic cond. $55247.5$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·13-s + 16·17-s + 4·19-s + 8·29-s + 8·31-s − 24·37-s − 8·43-s + 4·49-s + 16·53-s − 24·59-s − 4·61-s − 8·67-s + 32·79-s − 81-s + 16·83-s − 8·97-s + 8·101-s + 32·107-s − 12·109-s + 64·113-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  + 2.21·13-s + 3.88·17-s + 0.917·19-s + 1.48·29-s + 1.43·31-s − 3.94·37-s − 1.21·43-s + 4/7·49-s + 2.19·53-s − 3.12·59-s − 0.512·61-s − 0.977·67-s + 3.60·79-s − 1/9·81-s + 1.75·83-s − 0.812·97-s + 0.796·101-s + 3.09·107-s − 1.14·109-s + 6.02·113-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(55247.5\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.714299605\)
\(L(\frac12)\) \(\approx\) \(7.714299605\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + T^{4} \)
5$C_2^2$ \( 1 + T^{4} \)
good7$C_4\times C_2$ \( 1 - 4 T^{2} - 26 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^3$ \( 1 + 82 T^{4} + p^{4} T^{8} \)
13$D_4\times C_2$ \( 1 - 8 T + 32 T^{2} - 136 T^{3} + 562 T^{4} - 136 p T^{5} + 32 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
17$D_{4}$ \( ( 1 - 8 T + 48 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 4 T + 8 T^{2} - 20 T^{3} - 146 T^{4} - 20 p T^{5} + 8 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 56 T^{2} + 1714 T^{4} - 56 p^{2} T^{6} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 8 T + 32 T^{2} - 264 T^{3} + 2162 T^{4} - 264 p T^{5} + 32 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
31$D_{4}$ \( ( 1 - 4 T + 34 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 + 24 T + 288 T^{2} + 2520 T^{3} + 17426 T^{4} + 2520 p T^{5} + 288 p^{2} T^{6} + 24 p^{3} T^{7} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 - 140 T^{2} + 8134 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} - 104 T^{3} - 2798 T^{4} - 104 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 + 44 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 + 24 T + 288 T^{2} + 3048 T^{3} + 27634 T^{4} + 3048 p T^{5} + 288 p^{2} T^{6} + 24 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 + 4 T + 8 T^{2} - 324 T^{3} - 7042 T^{4} - 324 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} + 88 T^{3} - 2894 T^{4} + 88 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 - 78 T^{2} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 204 T^{2} + 19910 T^{4} - 204 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 - 16 T + 190 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 16 T + 128 T^{2} - 240 T^{3} - 4174 T^{4} - 240 p T^{5} + 128 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 - 284 T^{2} + 35494 T^{4} - 284 p^{2} T^{6} + p^{4} T^{8} \)
97$D_{4}$ \( ( 1 + 4 T + 70 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.67186615815877684384997602770, −6.26907404041484912731546475499, −5.94011178039100522853940573221, −5.91766085029204398058640370245, −5.88176049230273201471352102337, −5.54701408546380266843510205623, −5.17656023002627442408976526769, −5.09791536193724352322516408638, −4.84142030830673497374182141992, −4.75033188401694827768460089236, −4.56364573441911470411031298580, −3.84598102804918472277640168603, −3.78307876764164908781937707960, −3.58382518526357906893737189225, −3.46694083812269593233847446702, −3.27821759277848823805269127287, −3.16944547317447415340715786393, −2.70018806528677082990524929180, −2.48890721805053477796537560193, −2.04830783103863816971611376061, −1.52118959870396298510793870507, −1.37194031754706712954521298490, −1.33106499070955396053600247961, −0.78192263793194354330650623638, −0.57894411095963813285998279539, 0.57894411095963813285998279539, 0.78192263793194354330650623638, 1.33106499070955396053600247961, 1.37194031754706712954521298490, 1.52118959870396298510793870507, 2.04830783103863816971611376061, 2.48890721805053477796537560193, 2.70018806528677082990524929180, 3.16944547317447415340715786393, 3.27821759277848823805269127287, 3.46694083812269593233847446702, 3.58382518526357906893737189225, 3.78307876764164908781937707960, 3.84598102804918472277640168603, 4.56364573441911470411031298580, 4.75033188401694827768460089236, 4.84142030830673497374182141992, 5.09791536193724352322516408638, 5.17656023002627442408976526769, 5.54701408546380266843510205623, 5.88176049230273201471352102337, 5.91766085029204398058640370245, 5.94011178039100522853940573221, 6.26907404041484912731546475499, 6.67186615815877684384997602770

Graph of the $Z$-function along the critical line